Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (1): 90-102    DOI: 10.11873/j.issn.1004-0323.2021.1.0090
青藏高原遥感监测     
青藏高原不同气候子区典型湖泊多时间尺度变化的遥感对比研究
詹鹏飞1,2(),刘凯1,张玉超1,马荣华1,宋春桥1()
1.中国科学院南京地理与湖泊研究所 流域地理学重点实验室,江苏 南京 210008
2.中国科学院大学,北京 100049
A Comparative Study on the Changes of Typical Lakes in Different Climate Zones of the Tibetan Plateau at Multi-timescales based on Remote Sensing Observations
Pengfei Zhan1,2(),Kai Liu1,Yuchao Zhang1,Ronghua Ma1,Chunqiao Song1()
1.Key Laboratory of Watershed Geographic Sciences,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences,Nanjing 210008,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
 全文: PDF(5204 KB)   HTML
摘要:

青藏高原湖泊作为气候变化的重要指示器,监测高原湖泊水位变化对于准确评估该地区的气候及其对周围水文与环境的影响至关重要。而由于青藏高原地理环境复杂且恶劣,难以对湖泊进行长时间、连续的实地观测,但遥感技术的发展弥补了这个不足。利用多源测高卫星数据可以有效地监测湖泊水位长时序连续变化,促进对青藏高原湖泊气候变化响应特征的理解。基于Hydroweb多源测高水位同化数据,结合气温和降水地面观测资料,从年代际和年际变化、季节性变化以及极端干湿年份等不同时间尺度上对比青海湖和色林错的水位变化特征。并据此探讨了青藏高原湖泊变化的时空异质性,以及处于不同气候子区的湖泊变化响应特征。结果表明:青海湖和色林错水位变化差异较大,青海湖水位从1998年至2004年逐年下降,随着降雨量的增加,从2005年开始水位才开始上涨,直到2018年已经累计涨幅2.95 m;色林错水位从1998年开始,除了2015、2016两年水位有所下降外,一直处于增长状态,尤其前半段2000~2010年水位上涨更为迅速,年增率约0.8 m/a。最后,发现并讨论了青海湖和色林错的水位变化对于不同气候特征的响应规律,为下一步结合遥感观测和水文模型深入开展湖泊变化的驱动机制研究提供了基础。

关键词: 青藏高原青海湖色林错测高水位变化时空异质性    
Abstract:

Lakes in the Tibetan Plateau are important indicators of climate change. Monitoring the water level changes of the plateau lakes is essential for an accurate evaluation of regional climate change and its impact on the surrounding hydrologic environment. Because of the remoteness and poor accessibility of these alpine lakes, it is difficult to conduct long-term and continuous in-situ observation of lakes, yet the development of remote sensing technology has partly solve the difficulty. The use of multi-source altimetry satellite data can effectively monitor the continuous variation of lake water level and improve the understanding of climate change response characteristics of lakes in the Tibetan Plateau. Based on multi-source altimetry water level assimilation data accessed at Hydroweb, lake inundation area mapping results, combined with temperature and precipitation ground observation data, water level change characteristics of Qinghai Lake and Siling Co are analyzed from a comparative perspective on different time scales such as multi-decadal and interannual, seasonal, extreme dry and wet years. Based on this, the spatio-temporal difference of lake changes in the Tibetan Plateau and the response characteristics of lakes in different climate sub-regions are discussed. The results show that the water level difference between Qinghai Lake and Siling Co is quite obvious. The water level of Qinghai Lake had decreased year by year from 1998 to 2004. As rainfall increases, the water level began to rise from 2005, and the cumulative increase has been 2.95m until 2018. The water level of Siling Co has been growing since 1998, except for 2015 and 2016. The water level rose more rapidly from 2000 to 2010, with an annual growth rate of about 0.8 m/a. Finally, we have found and discussed the response of the water level changes of Qinghai Lake and Siling Co to different climatic characteristics, and provided the basis for further research on the driving mechanism of lake change in combination with remote sensing observation and hydrological model.

Key words: Tibetan Plateau    Qinghai Lake    Siling Co    Altimetry    Water level variation    Spatio-temporal difference
收稿日期: 2019-10-08 出版日期: 2021-04-13
ZTFLH:  P343.3  
基金资助: 第二次青藏高原科学考察与研究(2019QZKK0202);中国科学院战略性先导科技专项子课题(XDA23100102);国家重点研发计划项目(2019YFA0607101);国家自然科学基金项目(41971403)
通讯作者: 宋春桥     E-mail: pengfeizhan_niglas@163.com;cqsong@niglas.ac.cn
作者简介: 詹鹏飞(1994-),男,安徽马鞍山人,硕士研究生,主要从事湖泊水文遥感方面的研究。E?mail:pengfeizhan_niglas@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
詹鹏飞
刘凯
张玉超
马荣华
宋春桥

引用本文:

詹鹏飞,刘凯,张玉超,马荣华,宋春桥. 青藏高原不同气候子区典型湖泊多时间尺度变化的遥感对比研究[J]. 遥感技术与应用, 2021, 36(1): 90-102.

Pengfei Zhan,Kai Liu,Yuchao Zhang,Ronghua Ma,Chunqiao Song. A Comparative Study on the Changes of Typical Lakes in Different Climate Zones of the Tibetan Plateau at Multi-timescales based on Remote Sensing Observations. Remote Sensing Technology and Application, 2021, 36(1): 90-102.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.1.0090        http://www.rsta.ac.cn/CN/Y2021/V36/I1/90

青海湖色林错
影像获取时间水域面/km2水位观测时间水位/m影像获取时间水域面/km2水位观测时间水位/m
2000/08/104245.332000/08/073193.952000/11/081930.042000/11/064536.83
2002/10/114216.992002/10/193193.862003/11/252104.562003/12/014540.22
2007/05/184227.052007/05/263193.922007/06/132253.272007/06/184542.45
2010/05/104244.372010/05/163194.072011/08/272354.042011/09/074544.51
2013/10/094341.76

2013/09/23

2013/10/27

3195.072014/12/092393.532014/12/104545.74
2016/03/074353.422016/03/233195.222015/07/052394.00

2015/04/30

2015/09/16

4545.65
2016/11/024396.182016/10/263195.672016/11/022424.792016/10/224545.05
2018/09/014491.252018/09/0131956.52018/10/012463.652018/09/244545.79
表1  青海湖和色林错配对观测的水域面积与水位
图1  色林错和青海湖及周边概况
图2  水位长时序及年际变化
图3  湖泊水位年内季节性变化
图4  1998~2018年湖泊水位干湿季逐年变化量
图5  青海湖水域面积在2000~2018年时段的变化
图6  色林错水域面积在2000~2018年时段的变化
图7  水位与面积相关性
图8  水位与水量变化相关性
图9  1990~2018年期间青海湖及色林错周边站点年降水和年平均气温变化(取站点平均值)
1 Yao Tandong,Zhu Liping.The Response of Environmental Changes cn Tibetan Plateau to Global Changes and Adapta-tion Strategy[J].Advances in Earth Science,2006,21(5):459-464.
1 姚檀栋,朱立平. 青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展, 2006,21(5): 459-464.
2 Sun Honglie.Recent Advance in Studies on Qinhai-Xizang Plateau[J]. Advances in Earth Science,1996,11(6):18-
2 24[孙鸿烈. 青藏高原研究的新进展[J]. 地球科学进展, 1996,11(6): 18-24.]
3 Zheng Du,Lin Zhenyao,Zhang Xxueqing.Progress in Studies of Tibetan Plateau and Global Environment Change[J].Earth Science Frontiers,2002,9(1):95-102.
3 郑度,林振耀,张雪芹. 青藏高原与全球环境变化研究进展[J]. 地学前缘, 2002, (01): 95-102.
4 Ma Ronghua, Yang Guishan, Duan Hongtao, et al. Number, Area and Spatial Distribution of Lakes in China[J]. Chinese Science: Earth Science,2011,41(3):394-401.
4 马荣华,杨桂山,段洪涛,等. 中国湖泊的数量、面积与空间分布[J]. 中国科学:地球科学, 2011, 41(3): 394-401.
5 Zhang Guoqing.Changes in Lakes on the Tibetan Plateau Observed from Satellite Data and Their Responses to Climate Variations[J].Progress in Geography,2018,37(2):214-223.
5 张国庆. 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展[J]. 地理科学进展, 2018, 37(2): 214-223.
6 Pan Baotian,Li Jijun.Qinghai-Tibetan Plateau:A Driver and Amplifier of the Global Climatic Change-Ⅲ.The Effects of the Uplift of Qinghai-tibetan Plateau on Climate Changes[J].Journal of Lanzhou University(Natural Sciences),1996,32(1):108-115.
6 潘保田,李吉均. 青藏高原:全球气候变化的驱动机与放大器─Ⅲ.青藏高原隆起对气候变化的影响[J]. 兰州大学学报(自然科学版), 1996,32(1): 108-115.
7 Zhang Yongjun,Kang Shichang,Qin Dahe,et al.Seasonal Air Temperature Variations Retrieved from a Geladandong Ice Core,Tibetan Plateau[J].Acta Geographica Sinica,2007,62(5):501-509.
7 张拥军,康世昌,秦大河,等. 青藏高原各拉丹冬冰芯记录的季节气温变化[J]. 地理学报, 2007,62(5): 501-509.
8 Lu Anxin,Yao Tandong,Wang Lihong,et al.Study on the Fluctuations of Typical Glaciers and Lakes in the Tibetan Plateau Using Remote Sensing[J].Journal of Glaciology and Geocryology,2005,27(6):783-792.
8 鲁安新,姚檀栋,王丽红,等. 青藏高原典型冰川和湖泊变化遥感研究[J]. 冰川冻土, 2005,27(6): 783-792.
9 Li Junli,Chen Xi,Bao Anming.Spatial and Temporal Characteristics of Lake Water Level Changes in Central Asia During2003~2009[J].Acta Geographica Sinica,2011,66(9):1219-1229[李均力,陈曦,包安明. 2003~2009年中亚地区湖泊水位变化的时空特征[J]. 地理学报,2011,66(9):1219-1229.]
10 Luo Jiancheng,Sheng Yongwei,Shen Zhanfeng,et al.Automatic and High-precise Extraction for Water Information from Multi-spectral lmages with the Step-by-step lterative Transformation Mechanism[J].Journal of Remote Sensing,2009,13(4):610-615.
10 骆剑承,盛永伟,沈占锋,等. 分步迭代的多光谱遥感水体信息高精度自动提取[J]. 遥感学报, 2009, 13(4): 610-615.
11 Li Junli,Sheng Yongwei,Luo Jiancheng,et al.Remotely Sensed Mapping of Inland Lake Area Changes in the Tibetan Plateau[J].Journal of Lake Sciences,2011,23(3):311-320.
11 李均力,盛永伟,骆剑承,等. 青藏高原内陆湖泊变化的遥感制图[J]. 湖泊科学, 2011, 23(3): 311-320.
12 Song C,Huang B,Ke L. Modeling and Analysis of Lake Water Storage Changes on the Tibetan Plateau Using Multi-mission Satellite Data[J]. Remote Sensing of Environment, 2013, 135: 25-35.
13 Zhang Guoqing,Xie Hongjie,Yao Tandong,et al.WaterBalance Estimates of Ten Greatest Lakes in China Using ICESat and Landsat Data[J].Chinese Science Bulletin,2013,58(26):2664-2678.
13 张国庆,Xie Hongjie,姚檀栋,等. 基于ICESat和Landsat的中国十大湖泊水量平衡估算[J]. 科学通报, 2013, 58(26): 2664-2678.
14 Liao J,Shen G,Li Y. Lake Variations in Response to Climate Change in the Tibetan Plateau in the Past 40 Years[J]. International Journal of Digital Earth, 2013, 6(6): 534-549.
15 Meng Qingwei.Remote Sensing Analysis of the Large Lakes in the Tibetan Plateau and Its Environmental Significance[D].Beijing: Chinese Academy of Geological Sciences,2007.
15 孟庆伟. 青藏高原特大型湖泊遥感分析及其环境意义[D]. 北京:中国地质科学院, 2007.
16 Wu Huizhi,Jiang Qigang,Cheng Bin.Study of Dynamic Changes of Lakes in Qinghai-Tibet Plateau based on Remote Sensing and GIS[J].Global Geology,2007,26(1):66-70.
16 武慧智,姜琦刚,程彬. 基于RS和GIS技术青藏高原湖泊动态变化研究[J]. 世界地质, 2007, 26(1): 66-70.
17 Wan Wei,Xiao Pengfeng,Feng Xuezhi,et al.Monitoring Lake Changes of Qinghai-Tibetan Plateau over the Past 30 Years Using Satellite Remote Sensing Data[J].China Science Bulle-tin,2014,59(8):701-714.
17 万玮,肖鹏峰,冯学智,等. 卫星遥感监测近30年来青藏高原湖泊变化[J]. 科学通报, 2014, 59(8): 701-714.
18 Yan Lijuan,Zheng Mianping,Wei Lejun.Change of the Lakes in Tibetan Plateau and Its Response to Climate in the Past Forty Years[J].Earth Science Frontiers,2016,23(4):310-323.
18 闫立娟,郑绵平,魏乐军. 近40年来青藏高原湖泊变迁及其对气候变化的响应[J].地学前缘,2016,23(4):310-323.
19 Feng Zhongkui,Li Xiaohui.Qinghai Lake for Nearly 20 Years the Change and Evolution of Waters of Lake[J].Journal of Palaeogeography,2006,8(1):1-5.
19 冯钟葵,李晓辉. 青海湖近20年水域变化及湖岸演变遥感监测研究[J]. 古地理学报, 2006,8(1): 131-141.
20 Zhao Yun,Liao Jingjuan,Shen Guozhuang,et al.Monitoring the Water Level Changes in Qinghai Lake with Satellite Altimetry Data[J].Journal of Remote Sensing,2017,21(4):633-644.
20 赵云,廖静娟,沈国状,等. 卫星测高数据监测青海湖水位变化[J]. 遥感学报, 2017, 21(4): 633-644.
21 Luo Chengfeng,Xu Changjun,Cao Yinxuan,et al.Monitoring of Water Surface Area in Lake Qinghai from 1974 to 2016[J].Journal of Lake Sciences,2017,29(5):1245-1253.
21 骆成凤,许长军,曹银璇,等. 1974~2016年青海湖水面面积变化遥感监测[J]. 湖泊科学, 2017, 29(5): 1245-1253.
22 La Ba,Zhuoma Laba,Chen Tao.Change Research and Cause Analysis of Inland Lakes in Tibet based on MODIS Image[J].Meteorological and Environmental Sciences,2011,34(3):37-40.
22 拉巴,拉巴卓玛,陈涛. 基于MODIS影像的西藏典型内陆湖泊变化研究及成因分析[J]. 气象与环境科学, 2011, 34(3): 37-40.
23 Li Meng,Yan Denghua,Liu Shaohua,et al.Variation Characteristics of Water Surface Area and Water Storage Capacity of Namucuo Lake in Recent 40 Years[J].Water Resources and Power,2017,35(2):41-43,52.
23 李蒙,严登华,刘少华,等. 近40年来纳木错水面面积及蓄水量变化特征[J]. 水电能源科学, 2017, 35(2): 41-43,52.
24 Yangzong Deji, Ouzhu Qiangba, Yangzong Baima, et al.Response of Namtso Lake Area Change to Climate Change in Tibet[J].Henan Science and Techology,2019(10):133-136.德吉央宗,强巴欧珠,白玛央宗,等. 西藏纳木错湖泊面积变化对气候变化的响应[J]. 河南科技, 2019(10): 133-136.
25 Bian Duo,Bian Baciren,La Ba,et al.The Response of Waterlevel of Selin Co to Climate Change during 1975~2008[J].Jourmal of Geographical Sciences,2010,65(3):313-319.
25 边多,边巴次仁,拉巴,等. 1975~2008年西藏色林错湖面变化对气候变化的响应[J]. 地理学报, 2010, 65(3): 313-319.
26 Meng Kai,Shi Xuhua,Wang Erqi,et al. High-altitude Salt Lake Elevation Changes and Glacial Ablation in Central Tibet, 2000~2010[J]. Chinese Science Bulletin,2012,57(7):668-676.
26 孟恺,石许华,王二七,等. 青藏高原中部色林错湖近10年来湖面急剧上涨与冰川消融[J]. 科学通报, 2012, 57(7): 668-676.
27 Bian Duo,Du Jun,Hu Jun,et al.Response of the Water Levelof the Yamzho Yumco to Climate Change during 1975~2006.[J]Journal of Glaciology and Geocryology,2009,31(3):404-409.
27 边多,杜军,胡军,等. 1975~2006年西藏羊卓雍错流域内湖泊水位变化对气候变化的响应[J]. 冰川冻土, 2009, 31(3): 404-409.
28 Chu Duo,Pu Qiong,Zhuoma Laba,et al.Remote Sensing Analysis on Lake Area Variations of Yamzho Yunco in Tibetan Plateau[J].Journal of Lake Sciences,2012,24(3):494-502.
28 除多,普穷,拉巴卓玛,等.近40 a西藏羊卓雍错湖泊面积变化遥感分析[J]. 湖泊科学, 2012, 24(3): 494-502.
29 Zhao Yongli.Study on Dynamic Changes of Glaciers and Lakes in the Yangzhuotun Watershed, Tibet[J].Journal of Arid Land Resources and Environment,2014,28(8):88-93.
29 赵永利. 西藏羊卓雍错流域冰川-湖泊动态变化研究[J]. 干旱区资源与环境, 2014, 28(8): 88-93.
30 Zhang G,Xie H,Kang S,et al. Monitoring Lake Level Changes on the Tibetan Plateau Using ICESat Altimetry Data (2003-2009)[J]. Remote Sensing of Environment, 2011, 115(7): 1733-1742.doi:10.1016/j.rse.2011.03.005.
doi: 10.1016/j.rse.2011.03.005
31 Phan V H,Lindenbergh R,Menenti M. ICESat Derived Elevation Changes of Tibetan Lakes between 2003 and 2009[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 17: 12-22.doi:10.1016/j.jag.2011.09.015.
doi: 10.1016/j.jag.2011.09.015
32 Gao L,Liao J,Shen G. Monitoring Lake-level Changes in the Qinghai-Tibetan Plateau Using Radar Altimeter Data (2002~2012)[J]. Journal of Applied Remote Sensing, 2013, 7(1): 073470.doi:10.1117/1.JRS.7.073470.
doi: 10.1117/1.JRS.7.073470
33 Zhang Xin,Wu Yanhong.Water Level Variation of Inland Lakes on the South-central Tibetan Plateau in1972~2012[J].Acta Geographica Sinica,2014,69(7):993-1001.
33 张鑫,吴艳红.1972~2012年青藏高原中南部内陆湖泊的水位变化[J]. 地理学报, 2014, 69(7): 993-1001.
34 Song C,Huang B,Ke L. Heterogeneous Change Patterns of Water Level for Inland Lakes in High Mountain Asia Derived from Multi-mission Satellite Altimetry[J]. Hydrological Processes, 2015, 29(12): 2769-2781.doi:10.1002/hyp.10399.
doi: 10.1002/hyp.10399
35 Liu Ying,Yue Hui,Wang Haoren,et al.Dynamic an Alysis of Water Level and Area of Qinghai-Tibet Plateau Group Lakes based on LEGOS HYDROWEB[J].Science Technology & Engineering,2016,16(30):169-175.
35 刘英,岳辉,王浩人,等. 基于LEGOS HYDROWEB的青藏高原湖泊群水位和面积动态变化分析[J]. 科学技术与工程, 2016, 16(30): 169-175.
36 Wang H,Chu Y,Huang Z,et al. Robust, Long-term Lake Level Change from Multiple Satellite Altimeters in Tibet: Observing the Rapid Rise of Ngangzi Co over a New Wetland[J]. Remote Sensing, 2019, 11(5): 558.doi:10.3390/rs11050558.
doi: 10.3390/rs11050558
37 Li X,Long D,Huang Q,et al. High-temporal-resolution Water Level and Storage Change Data Sets for Lakes on the Tibetan Plateau during 2000~2017 Using Multiple Altimetric Missions and Landsat-derived Lake Shoreline Positions[J]. Earth System Science Data, 2019, 11(4): 1603-1627.doi:10.5194/essd-11-1603-2019.
doi: 10.5194/essd-11-1603-2019
38 Zhan P,Song C,Wang J,et al. Recent Abnormal Hydrologic Behavior of Tibetan Lakes Observed by Multi-Mission Altimeters[J]. Remote Sensing, 2020,12(18).doi:10.3390/rs12182986.
doi: 10.3390/rs12182986
39 Liu Jiangang.Recharge Mechanisms of Lakes and Groundwa-ter in Badain Jaran Desert[J].Water Protection,2010,26(2):18-23.
39 刘建刚. 巴丹吉林沙漠湖泊和地下水补给机制[J]. 水资源保护, 2010, 26(2): 18-23.
40 Ding Hongwei,Guo Rui,Lan Yongchao,et al.Study on the Supplying Source and Mode of Lakes in the Badain Jaran Desert and the Formation Mechanism of Megadunes[J].Journal of Glaciology and Geocryology,2015,37(3):783-792.
40 丁宏伟,郭瑞,蓝永超,等. 再论巴丹吉林沙漠湖泊水的补给来源、补给模式与高大沙山的形成机理[J]. 冰川冻土, 2015, 37(3): 783-792.
41 Zheng Du.Study on the Natural Section System of Qinghai-Xi-zang Plateau[J].Science in China(D),1996,26(4):336-341.
41 郑度. 青藏高原自然地域系统研究[J]. 中国科学(D辑:地球科学), 1996,26(4): 336-341.
42 Zhang G,Yao T,Xie H,et al. Lakes’ State and Abundance Across the Tibetan Plateau[J]. Chinese Science Bulletin, 2014, 59(24): 3010-3021.
43 Zhang G,Yao T,Xie H,et al. Response of Tibetan Plateau Lakes to Climate Change: Trends, Patterns, and Mechanisms[J]. Earth-Science Reviews, 2020, 208.doi:10.1016/j.earscirev.2020.103269.
doi: 10.1016/j.earscirev.2020.103269
44 Krause P,Biskop S,Helmschrot J,et al. Hydrological System Analysis and Modelling of the Nam Co basin in Tibet[J]. Advances in Geosciences, 2010, 27: 29-36.doi:10.5194/adgeo-27-29-2010.
doi: 10.5194/adgeo-27-29-2010
45 Yao Li,Wu Qingmei.Climatic Characteristics of Qinghai-Xi-zang Plateau[J].Meteorological Science and Technology,2002,30(3):163-164.
45 姚莉,吴庆梅. 青藏高原气候变化特征[J]. 气象科技, 2002, 30(3): 163-164.
46 Niu Tao,Liu Hongli,Song Yan,et al.Study on Decade Change of Climate Shift from Warm-dry Period to Warm-wet Period over Tibetan Plateau].Journal of Applied Meteorological Science,2005,16(6):763-771.[牛涛,刘洪利,宋燕,等. 青藏高原气候由暖干到暖湿时期的年代际变化特征研究[J]. 应用气象学报, 2005, 16(6): 763-771.]
47 Shen Ji,Zhang Enlou,Xia Weilan.Lake Sediment Records of Climate Change in Qinghai Lake in the Past Millennium.Quaternary Research,2001,21(6):508-513.
47 沈吉,张恩楼,夏威岚. 青海湖近千年来气候环境变化的湖泊沉积记录[J]. 第四纪研究, 2001,21(6): 508-513.
48 Shen Fang,Kuang Dingbo.Remote Sensing Investigation and Survey of Qinghai Lakeinthe Past 25 Years[J].Journal of Lake Sciences,2003,15(4):289-296.
48 沈芳,匡定波. 青海湖最近25年变化的遥感调查与研究[J]. 湖泊科学, 2003,15(4): 289-296.
49 Sun Yongliang,Li Xiaoyan,Tang Jia,et al.Climate Change and Hydrological Response in the Watershed of Qinghai Lake[J].Resources Science,2008,30(3):354-362.
49 孙永亮,李小雁,汤佳,等. 青海湖流域气候变化及其水文效应[J]. 资源科学, 2008,30(3): 354-362.
50 Bai Wenrong, Yu Di, Liu Caihong, et al. Trend and Cause Analysis of Water Level and Area of Qinghai Lake under the Background of Global Warming[J]. Qinghai Science and Technology, 2019,26(3): 72-78.
50 白文蓉,余迪,刘彩红,等. 气候变暖背景下青海湖水位及面积变化趋势及成因分析[J]. 青海科技, 2019, 26(3): 72-78.
51 Crétaux J F,Jelinski W,Calmant S,et al. SOLS: A Lake Database to Monitor in the Near Real Time Water Level and Storage Variations from Remote Sensing Data[J]. Advances in Space Research, 2011, 47(9): 1497-1507.doi:10.1016/j.asr.2011.01.004.
doi: 10.1016/j.asr.2011.01.004
52 Li Junli,Sheng Yongwei,Luo Jiancheng.Automatic Extraction of Himalayan Glacial Lakes with Remote Sensing[J].Journal of Remote Sensing,2011,15(1):2-6.
52 李均力,盛永伟,骆剑承. 喜马拉雅山地区冰湖信息的遥感自动化提取[J]. 遥感学报, 2011, 15(1): 29-43.
53 Wang J,Sheng Y,Tong T S D. Monitoring Decadal Lake Dynamics Across the Yangtze Basin Downstream of Three Gorges Dam[J]. Remote Sensing of Environment, 2014, 152: 251-269.doi:10.1016/j.rse.2014.06.004.
doi: 10.1016/j.rse.2014.06.004
54 Song C,Sheng Y. Contrasting Evolution Patterns between Glacier-fed and Non-glacier-fed Lakes in the Tanggula Mountains and Climate Cause Analysis[J]. Climatic Change, 2016, 135(3-4): 493-507.doi:10.1007/s10584-015-1578-9.
doi: 10.1007/s10584-015-1578-9
55 Sheng Y,Song C,Wang J,et al. Representative Lake Water Extent Mapping at Continental Scales Using Multi-temporal Landsat-8 Imagery[J]. Remote Sensing of Environment, 2016, 185: 129-141.doi:10.1016/j.rse.2015.12.041.
doi: 10.1016/j.rse.2015.12.041
56 Taube C M. Instructions for Winter Lake Mapping[J]. Manual of Fisheries Survey Methods II: with Periodic Updates. Michigan Department of Natural Resources, Ann Arbor, 2000: 1-4.
57 Yang K,Wu H,Qin J,et al. Recent Climate Changes over the Tibetan Plateau and Their Impacts on Energy and Water Cycle: A Review[J]. Global and Planetary Change, 2014, 112: 79-91.doi:10.1016/j.gloplacha.2013.12.001.
doi: 10.1016/j.gloplacha.2013.12.001
58 Sun J,Yang K,Guo W,et al. Why has the Inner Tibetan Plateau become Wetter Since the Mid-1990s?[J].Journal of Clima-te,2020,33(19):8507-8522.doi:10.1175/JCLI-D-19-0471.1.
doi: 10.1175/JCLI-D-19-0471.1
59 Lei Y,Yang K,Wang B,et al. Response of Inland Lake Dynamics over the Tibetan Plateau to Climate Change[J]. Climatic Change, 2014, 125(2): 281-290.doi:10.1007/s10584-014-1175-3.
doi: 10.1007/s10584-014-1175-3
60 Qiao B,Zhu L,Yang R. Temporal-spatial Differences in Lake Water Storage Changes and Their Links to Climate Change Throughout the Tibetan Plateau[J]. Remote Sensing of Environment, 2019,222:232-243.doi:10.1016/j.rse.2018.12.037.
doi: 10.1016/j.rse.2018.12.037
61 Yang Y,Long D,Guan H,et al. GRACE Satellite Observed Hydrological Controls on Interannual and Seasonal Variability in Surface Greenness over Mainland Australia[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(12): 2245-2260.doi:10.1002/2014JG002670.
doi: 10.1002/2014JG002670
62 Yang K,Yao F,Wang J,et al. Recent Dynamics of Alpine Lakes on the Endorheic Changtang Plateau from Multi-mission Satellite Data[J]. Journal of Hydrology, 2017, 552: 633-645.doi:10.1016/j.jhydrol.2017.07.024.
doi: 10.1016/j.jhydrol.2017.07.024
63 Zhang G,Yao T,Shum C K,et al. Lake Volume and Groundwater Storage Variations in Tibetan Plateau's Endorheic basin[J]. Geophysical Research Letters, 2017, 44(11): 5550-5560.doi:10.1002/2017GL073773.
doi: 10.1002/2017GL073773
64 Lei Y,Zhu Y,Wang B,et al. Extreme Lake Level Changes on the Tibetan Plateau Associated With the 2015/2016 El Niño[J]. Geophysical Research Letters, 2019, 46(11): 5889-5898.doi:10.1029/2019GL081946.
doi: 10.1029/2019GL081946
65 Liang Bin,Qi Shi,Li Zhiyong,et al.Dynamic Change of Lake Area over the Tibetan Plateau and Its Response to Climate Change[J].Journal of Mountain Science,2018,36(2):206-216
65 梁斌,齐实,李智勇,等. 青藏高原湖泊面积动态变化及其对气候变化的响应[J].山地学报,2018,36(2):206-216.
66 Zhou J,Wang L,Zhang Y,et al. Exploring the Water Storage Changes in the Largest Lake (Selin Co) over the Tibetan Plateau during 2003~2012 from a Basin-wide Hydrological Modeling[J]. Water Resources Research, 2015, 51(10): 8060-8086.doi:10.1002/2014WR015846.
doi: 10.1002/2014WR015846
[1] 雷华锦,李弘毅,王建,郝晓华,赵宏宇,张娟. 基于环境信息和回归模型的青藏高原MODIS积雪面积比例产品制备[J]. 遥感技术与应用, 2020, 35(6): 1303-1311.
[2] 王鑫蕊, 晋锐, 林剑, 曾祥飞, 赵泽斌. 有云Landsat TM/OLI影像结合DEM提取青藏高原湖泊边界的自动算法研究[J]. 遥感技术与应用, 2020, 35(4): 882-892.
[3] 焦雪敏,张赫林,徐富宝,王岩,彭代亮,李存军,徐希燕,范海生,黄运新. 青藏高原1982~2015年FPAR时空变化分析[J]. 遥感技术与应用, 2020, 35(4): 950-961.
[4] 马金双,唐月英,董晓. 干涉成像雷达高度计数据BAQ压缩的FPGA实现及数据评估[J]. 遥感技术与应用, 2020, 35(3): 664-672.
[5] 张永宏,杨晨阳,陶润喆,王剑庚,田伟. 基于FY-4A数据的青藏高原多时相云检测方法[J]. 遥感技术与应用, 2020, 35(2): 389-398.
[6] 陈家利,郑东海,庞国锦,李新. 基于SMAP亮温数据反演青藏高原玛曲区域土壤未冻水[J]. 遥感技术与应用, 2020, 35(1): 48-57.
[7] 张正,肖鹏峰,张学良,冯学智,杨永可,胡瑞,盛光伟,刘豪. 青藏高原融雪期积雪反照率特性分析[J]. 遥感技术与应用, 2019, 34(6): 1146-1154.
[8] 许文鑫, 周玉科, 梁娟珠. 基于变化点的青藏高原植被时空动态变化研究 [J]. 遥感技术与应用, 2019, 34(3): 667-676.
[9] 龙恩, 汪源, 孟钢, 王伟阳, 陈旭, 连翠萍. 基于同名特征的建筑物高度高分影像提取方法[J]. 遥感技术与应用, 2019, 34(1): 107-114.
[10] 张博, 吴立宗. 基于Spark的分布式青藏高原MODIS LST插值方法实现研究[J]. 遥感技术与应用, 2018, 33(6): 1178-1185.
[11] 苗翔鹰, 苗洪利, 张旭东, 黄霞凤, 王桂忠. 利用星下点干涉相位法提高三维成像高度计测高精度[J]. 遥感技术与应用, 2018, 33(5): 866-872.
[12] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[13] 周玉科,刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3): 486-498.
[14] 陈思宇,巩垠熙,梁天刚. 星载激光雷达在青藏高原湖泊变迁中的应用研究[J]. 遥感技术与应用, 2018, 33(2): 351-359.
[15] 马敏娜,袁文平. 青藏高原总初级生产力估算的模型差异[J]. 遥感技术与应用, 2017, 32(3): 406-418.