遥感技术与应用 2021, Vol. 36 Issue (1): 208-216 DOI: 10.11873/j.issn.1004-0323.2021.1.0208 |
遥感应用 |
|
|
|
|
基于GF⁃1 PMS数据的森林覆盖变化检测 |
王崇阳( ),田昕( ) |
中国林业科学研究院资源信息研究所,北京 100091 |
|
Forest Cover Change Detection based on GF-1 PMS Data |
Chongyang Wang( ),Xin Tian( ) |
Institute of Forest Resource Information Techniques,Chinese Academy of Forestry,Beijing 100091,China |
1 |
Li Shiming, Wang Zhihui, Han Xuewen, et al. Overview of Forest Resources Change Detection Methods Using Remote Sensing Techniques[J]. Journal of Beijing Forest University, 2011, 33(3): 132-138.
|
1 |
李世明, 王志慧, 韩学文,等. 森林资源变化遥感监测技术研究进展[J]. 北京林业大学学报, 2011, 33(3): 132-138.
|
2 |
Wu Xueqiong, Qin Xianlin, Zhou Ruliang, et al. Progress of Study on Forest Cover Change Detection by Using Remote Sensing Technique[J]. Forest Resources Management, 2010(4): 84-89.吴雪琼, 覃先林, 周汝良, 等. 森林覆盖变化遥感监测方法研究进展[J]. 林业资源管理, 2010(4): 84-89.
|
3 |
Hao Xinrong. Forest Cover Change Detection Method Using GF-1 Multi-spectral Data[D]. Xi’an:Xi’an University of Science and Technology, 2016.
|
3 |
郝荣欣. 基于GF-1多光谱影像的林地变化检测方法研究[D]. 西安:西安科技大学, 2016.
|
4 |
Zhang Liyun, Zhao Tianzhong, Xia Chaozong, et al. Application of Change Detection Technologies of Remote Sensing to Forestry[J]. World Forestry Research, 2016, 29(2): 44-48.
|
4 |
张丽云, 赵天忠, 夏朝宗, 等. 遥感变化检测技术在林业中的应用[J]. 世界林业研究, 2016, 29(2): 44-48.
|
5 |
Zhou Qiming. Review on Change Detection Using Multi-temporal Remotely Sensed Imagery[J]. Geomatics World, 2011, 9(2): 28-33.
|
5 |
周启鸣. 多时相遥感影像变化检测综述[J]. 地理信息世界, 2011, 9(2): 28-33.
|
6 |
Yan Wei, Zhou Wen, Yi Lilong, et al. Research Progress of Remote Sensing Classification and Change Monitoring on Forest Types[J]. Remote Sensing Technology and Application, 2019, 34(3): 445-454.
|
6 |
颜伟, 周雯, 易利龙, 等. 森林类型遥感分类及变化监测研究进展[J]. 遥感技术与应用, 2019, 34(3): 445-454.
|
7 |
Chen Xinbiao. A Summary of Change Detection Techniques of Remote Sensing Imagery[J]. Geomatics & Spatial Information Technology, 2012, 35(9): 38-41.
|
7 |
陈鑫镖. 遥感影像变化检测技术发展综述[J]. 测绘与空间地理信息, 2012, 35(9): 38-41.
|
8 |
Jin S, Yang L, Danielson P, et al. A Comprehensive Change Detection Method for Updating The National Land Cover Database to Circa 2011[J]. Remote Sensing of Environment, 2013, 132(10): 159-175.
|
9 |
Ozdogan M. A Practical and Automated Approach to Large Area Forest Disturbance Mapping with Remote Sensing[J]. Plos One,2014, 9(4): e78438. doi:10.1371/Journal.pone. 0078438.
doi: 10.1371/Journal.pone. 0078438
|
10 |
Huang L, Fang Y M, Zuo X Q, et al. Automatic Change Detection Method of Multitemporal Remote Sensing Images based on 2D-Otsu Algorithm Improved by Firefly Algorithm[J].Journal of Sensors,2015: 1-8.doi:10.1155/2015/327123.
doi: 10.1155/2015/327123
|
11 |
Ma L, Li M, Ma X, et al. A Review of Supervised Object-based Land Cover Image Classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 277-293.
|
12 |
Xiang Tao, Li Tao, Zhao Xuezhuan, et al. Random Forests for Accurate Object Detection[J]. Application Research of Computers, 2016, 33(9): 2837-2840.
|
12 |
向涛, 李涛, 赵雪专, 等. 基于随机森林的精确目标检测方法[J]. 计算机应用研究, 2016, 33(9): 2837-2840.
|
13 |
Ren Chong, Ju Hongbo, Zhang Huaiqing, et al. Research on Remote Sensing Monitoring Technology of Forest Land Dynamic Change in Tianshui in Recent 30 Years[J]. Forest Research, 2017, 30(1): 25-33.
|
13 |
任冲, 鞠洪波, 张怀清, 等. 天水市近30年林地动态变化遥感监测研究[J]. 林业科学研究, 2017, 30(1): 25-33.
|
14 |
Zhang Lianhua, Li Chungan. Automatic Extraction of Forest Training Sample and Their Application in Change Detection Using High Resolution Remote Sensing Image[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 35(3): 13-17.
|
14 |
张连华, 李春干. 高分辨率遥感图像森林训练样本自动提取及其在变化检测中的应用[J]. 南京林业大学学报(自然科学版), 2015, 35(3): 13-17.
|
15 |
Woodcock C E, Macomber S A, Pax-Lenney M, et al. Monitoring Large Ares for Forest Change Using +Landsat: Generalization Across Space, Time and Landsat Sensors[J]. Remote Sensing of Environment, 2001, 78(1/2): 194-203.
|
16 |
Tang J, Hu Y, Chen X, et al. A Method of Land Use/land Cover Change Detection from Remote Sensing Image based on Support Vector Machines[C]∥ Second International Conference on Space Information Technology, 2007:6795.
|
17 |
Canty M J, Nielsen A. Automatic Radiometric Normalization of Multitemporal Satellite Imagery with The Iteratively Re-Weighted MAD Transformation[J]. Remote Sensing of Environment, 2008, 112(3): 1025-1036.
|
18 |
Dempster A P. Maximum Likelihood from Incomplete Data Via The EM Algorithm[J]. Journal of Royal Statistical Society B, 1977, 39(1):1-38.
|
19 |
Nielsen A, Conradsen K, Simpson J. Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies[J]. Remote Sensing of Environment, 1998, 64(1): 1-19.
|
20 |
Liao Mingsheng, Zhu Pan, Gong Jianya. Multivariate Change Detection based on Canonical Transformation[J]. Journal of Remote Sensing, 2000, 4(3): 197-201.
|
20 |
廖明生, 朱攀, 龚健雅. 基于典型相关分析的多元变化检测[J]. 遥感学报, 2000, 4(3): 197-201.
|
21 |
Sheng Hui, Liao Mingsheng, Zhang Lu. Determination of Threshold in Change Detection based on Canonical Correlation Analysis[J]. Journal of Remote Sensing, 2004, 8(5): 451-457.
|
21 |
盛辉, 廖明生, 张路. 基于典型相关分析的变化检测中变化阈值的确定[J]. 遥感学报, 2004, 8(5): 451-457.
|
22 |
Marpu P R, Gamba P, Canty M J. Improving Change Detection Results of IR-MAD by Eliminating Strong Changes[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 799-803.
|
23 |
Otsu N. A Threshold Selection Method from Gray-level Histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 2007, 9(1): 62-66.
|
24 |
Zhao Yingshi. Principles and Methods of Remote Sensing Application Analysis[M].Beijing: Science Press,2003.
|
24 |
赵英时.遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003.
|
25 |
Zhang Zhaopeng. Forest Land Types Precise and Change Monitoring based on Multi-source Remote Sensing Date[D]. Xi'an: Xi'an University of Science and Technology, 2018.
|
25 |
张兆鹏. 基于多源遥感数据的林地类型精细分类识别与变化监测研究[D]. 西安:西安科技大学, 2018.
|
26 |
Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32.
|
27 |
Zhong Longshen. Random Forest Improved Processing of Unbalanced Data and Its Parallelization[D]. Guangzhou: Guangdong University of Technology, 2016.
|
27 |
钟龙申. 随机森林算法处理不平衡数据的改进及其并行化[D]. 广州: 广东工业大学, 2016.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|