遥感技术与应用 2021, Vol. 36 Issue (2): 256-264 DOI: 10.11873/j.issn.1004-0323.2021.2.0256 |
CNN 专栏 |
|
|
|
|
结合VGGNet与Mask R-CNN的高分辨率遥感影像建设用地检测 |
陈敏1,2( ),潘佳威2,李江杰2,徐璐2,刘加敏1,2,韩健3( ),陈奕云2,4 |
1.广州市城市规划勘测设计研究院,广东 广州 510060 2.武汉大学资源与环境科学学院,湖北 武汉 430079 3.广西华遥空间信息科技有限公司,广西 南宁 530031 4.土壤与农业可持续发展国家重点实验室,江苏 南京 210008 |
|
High Resolution Remote Sensing Image Construction Land Detection Combined with VGGNet and Mask R-CNN |
Min Chen1,2( ),Jiawei Pan2,Jiangjie Li2,Lu Xu2,Jiamin Liu1,2,Jian Han3( ),Yiyun Chen2,4 |
1.Guangzhou Urban Planning Survey & Design Survey Research Institute,Guangzhou 510060,China 2.School of Resource and Environmental Science,Wuhan University,Wuhan 430079,China 3.Guangxi Huayao Space Information Technology co. LTD,Nanning 530031,China 4.State Key Laboratory of Soil and Sustainable Agriculture,Chinese Academy of Sciences,Nanjing 210008,China |
引用本文:
陈敏,潘佳威,李江杰,徐璐,刘加敏,韩健,陈奕云. 结合VGGNet与Mask R-CNN的高分辨率遥感影像建设用地检测[J]. 遥感技术与应用, 2021, 36(2): 256-264.
Min Chen,Jiawei Pan,Jiangjie Li,Lu Xu,Jiamin Liu,Jian Han,Yiyun Chen. High Resolution Remote Sensing Image Construction Land Detection Combined with VGGNet and Mask R-CNN. Remote Sensing Technology and Application, 2021, 36(2): 256-264.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.2.0256
或
http://www.rsta.ac.cn/CN/Y2021/V36/I2/256
|
1 |
Hu Wei, Gao Bochuan, Huang Zhenhang, et al. Tree-structured Convolutional Neural Network Optimization for Semantic Segmentation of Remote Sensing Images in Urban Areas[J].Chinese Journal of Graphics,2020,25(5):197-206.
|
1 |
胡伟,高博川,黄振航,等.树形结构卷积神经网络优化的城区遥感图像语义分割[J].中国图象图形学报,2020,25(5):197-206.
|
2 |
Deng Zhipeng, Sun Hao, Lei Lin, et al. High-resolution Remote Sensing Image Target Detection based on Multi-scale Deformation Feature Convolution Network[J]. Journal of Surveying and Mapping,2018,47(9):1216-1227.
|
2 |
邓志鹏,孙浩,雷琳,等.基于多尺度形变特征卷积网络的高分辨率遥感影像目标检测[J].测绘学报,2018,47(9):1216-1227
|
3 |
Ding Xiaohui. Classification of Hyperspectral Remote Sensing Images based on ant Colony Algorithm[D].Changchun: Graduate School of Chinese Academy of Sciences (Northeast Institute of Geography and Agricultural Ecology), 2016.
|
3 |
丁小辉. 基于蚁群算法的高光谱遥感影像地物分类研究[D]. 长春:中国科学院研究生院(东北地理与农业生态研究所), 2016.
|
4 |
Pan Yifan, Zhang Xianfeng, Yu Hongfeng, et al. Urban Land Cover Classification based on Texture Information of Joint Kuaizhou-1 Image[J]. Remote Sensing Technology and Application,2016,31(1):194-202.
|
4 |
潘一凡,张显峰,于泓峰,等.联合快舟一号影像纹理信息的城市土地覆盖分类[J].遥感技术与应用,2016,31(1):194-202.
|
5 |
Xianxia. High-resolution Remote Sensing Image Scene Classification based on Multi-feature Deep Learning[D]. Kunming:Yunnan Normal University,2019.
|
5 |
鲜霞.基于多特征深度学习的高分辨率遥感影像场景分类[D]. 昆明:云南师范大学,2019.
|
6 |
Cao Zhaowei. Classification of Island Remote Sensing Images and Features based on Artificial Neural Network[D]. Shanghai:Shanghai Ocean University, 2016.
|
6 |
曹兆伟.基于人工神经网络的海岛遥感影像地物分类研究[D].上海:上海海洋大学,2016.
|
7 |
Ali S S , Raza I U R , Kazmi S S A , et al. Comparison of Pixel-based and Object-based Classification for Glacier Chan-ge Detection[C]∥ Second International Workshop on Earth Observation & Remote Sensing Applications.IEEE,2012.
|
8 |
Luo Zhiyong, Li Xiaodong. Research on High Performance Tile Map Service based on Database Storage Scheme[J]. Geography and Geographic Information Science, 2013, 29 (3): 52-55,112.
|
8 |
罗智勇, 黎小东. 基于数据库存储方案的高性能瓦片地图服务研究[J]. 地理与地理信息科学,2013, 29(3):52-55,112.
|
9 |
Li Xin, Tang Wenli, Yang Bo. Semantic Segmentation of High Resolution Remote Sensing Image Using Depth Residual Network[J]. Journal of Applied Sciences, 2019, 37 (2):282-290.
|
9 |
李欣, 唐文莉, 杨博. 利用深度残差网络的高分遥感影像语义分割[J]. 应用科学学报, 2019, 37(2):282-290.
|
10 |
Yu Ximing, Hong Shuo, Yu Jinxiang, et al. Research on the Enhancement Method of Visible Light Remote Sensing Image Ship Target Data[J]. Journal of Instrumentation,2020,41(11):261-269.
|
10 |
于希明,洪硕,于金祥,等.可见光遥感图像船舶目标数据增强方法研究[J].仪器仪表学报,2020,41(11):261-269.
|
11 |
Xu Chenyu. Research and Improvement of YOLOv3-based Hazardous Goods Detection Model[D]. Lanzhou:Lanzhou University,2019.
|
11 |
徐晨玉. 基于YOLOv3的危险物品检测模型研究与改进[D]. 兰州:兰州大学,2019.
|
12 |
Simonyan K, Zisserman A.Very Deep Convolutional Networks for Large-scale Image Recognition[C]∥ The 3rd International Conference on Learning Representations (ICLR2015).
|
13 |
Zeiler M D, Fergus R. Visualizing and Understanding Convolutional Networks[C]∥ European Conference on Computer Vision. Springer, Cham, 2014:818-833.
|
14 |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
|
15 |
He K M, Zhang X Y, Ren S Q, et al. Deep Residual Learning for Image Recognition [J]. IEEE Computer Society, 2016:770-778.doi:10.1109/CVPR.2016.90.
doi: 10.1109/CVPR.2016.90
|
16 |
Huang G, Liu Z, Van der Maaten L, et al. Densely Connected Convolutional Networks[S/OL]. http://arxi.org/abs/1608. 06993,2017.doi:10.1109/CVPR.2017.243.
doi: 10.1109/CVPR.2017.243
|
17 |
Ren S Q, He K, Girshick Ross , et al. Faster R-CNN: Towards Real-time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149. doi:10.1109/TPAMI.2016.2577031.
doi: 10.1109/TPAMI.2016.2577031
|
18 |
He K, Gkioxari G, Dollar P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018:1-1.doi:10.1109/TPAMI.2018.2844175.
doi: 10.1109/TPAMI.2018.2844175
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|