遥感技术与应用 2021, Vol. 36 Issue (2): 265-274 DOI: 10.11873/j.issn.1004-0323.2021.2.0265 |
CNN 专栏 |
|
|
|
|
基于卷积神经网络的面向对象露天采场提取 |
胡乃勋1( ),陈涛1,3( ),甄娜2,牛瑞卿1 |
1.中国地质大学(武汉)地球物理与空间信息学院,湖北 武汉 430074 2.河南省地质环境监测院,河南 郑州 450006 3.青海省地理空间信息技术与应用重点实验室,青海 西宁 810001 |
|
Object-oriented Open Pit Extraction based on Convolutional Neural Network |
Naixun Hu1( ),Tao Chen1,3( ),Na Zhen2,Ruiqing Niu1 |
1.Institute of Geophysics and Geomatics,China University of Geosciences,Wuhan 430074,China 2.Geological Environment Monitoring Institute of Henan Province,Zhengzhou 450006,China 3.Geomatics Technology and Application key Laboratory of Qinghai Province,Xining 810001,China |
引用本文:
胡乃勋,陈涛,甄娜,牛瑞卿. 基于卷积神经网络的面向对象露天采场提取[J]. 遥感技术与应用, 2021, 36(2): 265-274.
Naixun Hu,Tao Chen,Na Zhen,Ruiqing Niu. Object-oriented Open Pit Extraction based on Convolutional Neural Network. Remote Sensing Technology and Application, 2021, 36(2): 265-274.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.2.0265
或
http://www.rsta.ac.cn/CN/Y2021/V36/I2/265
|
1 |
Braghina C, Peptenatu D, Constantinescu S, et al. The Pressure Exerted on the Natural Environment in the Open Pit Exploitation Areas in Oltenia[J]. Carpathian Journal of Earth and Environmental Sciences, 2010,5(1):33-40.
|
2 |
Chen Weitao, Zhang Zhi, Wang Yanxin. Advances in Remote Sensing-based Detecting of Mine Exploitation and Mine Environment[J]. Remote Sensing for Land & Resource,2009,21(2):1-8.
|
2 |
陈伟涛, 张志, 王焰新. 矿山开发及矿山环境遥感探测研究进展[J]. 国土资源遥感,2009,21(2):1-8.
|
3 |
Yu Kai, Jia Lei, Chen Yuqiang, et al. Deep Learning: Yesterday, Today, and Tomorrow[J]. Journal of Computer Research and Development, 2013,50(9):1799-1804.
|
3 |
余凯, 贾磊, 陈雨强, 等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展, 2013,50(9):1799-1804.
|
4 |
He Qing, Li Ning, Luo WenJuan, et al. A Survey of Machine Learning Algorithms for Big Data[J]. Pattern Recognition and Artificial Intelligence, 2014,27(4): 327-336.
|
4 |
何清, 李宁, 罗文娟, 等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能, 2014,27(4):327-336.
|
5 |
Zhang Xin. The Study of SVM-based Medical Image Classification[D]. Hangzhou: Zhejiang University,2006.
|
5 |
张昕. 基于SVM方法的医学图像分类研究[D]. 杭州:浙江大学,2006.
|
6 |
Wang Shuqin. Machine Learning Methods and Their Applications in Bioinformatics[D]. Changchun: Jilin University,2017.
|
6 |
王淑琴. 机器学习方法及其在生物信息学领域中的应用[D].长春:吉林大学,2009.
|
7 |
Chen Huali, Chen Zhihua, Ding Guoping. The Application of The Knowledge-based Decision Tree Classification Method to The Extraction of Land Types in Mining Areas: A Case Study of Daye Area, Hubei Province[J]. Remote Sensing for Land & Resource, 2004,16(3): 49-53.
|
7 |
陈华丽, 陈植华, 丁国平. 用基于知识的决策树方法分层提取矿区土地类型——以湖北大冶为例[J].国土资源遥感, 2004,16(3):49-53.
|
8 |
Li Deren, Tong Qingxi, Li Rongxing, et al. Several Cutting-edge Scientific Issues of High-resolution Earth Observation[J]. ScientiaSinica(Terrae),2012,42(6):805-813.
|
8 |
李德仁, 童庆禧, 李荣兴, 等. 高分辨率对地观测的若干前沿科学问题[J]. 中国科学:地球科学, 2012,42(6):805-813.
|
9 |
Baatz M, Schape A. Multiresolution Segmentation: An Optimization Approach for High Quality Multi-scale Image Segmentation[C]∥ Angewandte Geographische Informationsverarbeitung XII Berlin, 2000:12-23.
|
10 |
Cheng Lu. Application of Object-oriented Combined SVM in Information Extraction of Open-pit Mine[D]. Xining: Qinghai University, 2017.
|
10 |
程璐. 面向对象结合支持向量机(SVM)在露天矿区信息提取中的应用研究[D]. 西宁:青海大学,2012.
|
11 |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Communications of the Acm, 2017,60(6):84-90.
|
12 |
Lecun Y, Jackel L D, Boser B, et al. Handwritten Digit Recognition-Applications of Neural Network Chips and Automatic Learning[J]. IEEE Communications Magazine, 1989,27(11):41-46.
|
13 |
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition[J]. Computer Science, 2014,arXiv preprint arXiv:1409-1556.
|
14 |
Szegedy C, Liu W, Jia Y, et al. Going Deeper with Convolutions[C]∥ Proccedings of the IEEE Conference on Computer Vision and Patten Recogntion[C]∥ 2015: 1-9.
|
15 |
Xu Gang, Yue Jiguang, Dong Yanchao, et al. Cement Plant Detection on Satellite Images Using Deep Convolution Network[J]. Journal of Image and Graphics, 2019, 24(4):550-561.
|
15 |
徐刚, 岳继光, 董延超, 娄启佳, 等. 深度卷积网络卫星图像水泥厂目标检测. 中国图象图形学报,2019;24(4):550-561.
|
16 |
Cai Bowen, Wang Shugen, Wang Lei, et al. Extraction of Urban Impervious Surface from High-resolution Remote Sensing Imagery based on Deep Learning [J]. Journal of Geo-information Science,2019,21(9):1420-1429.
|
16 |
蔡博文,王树根,王磊,等.基于深度学习模型的城市高分辨率遥感影像不透水面提取[J]. 地球信息科学学报,2019,21(9):1420-1429.
|
17 |
Chen W T, Li X J, Wang L Z. Fine Land Cover Classification in an Open Pit Mining Area Using Optimized Support Vector Machine and WorldView-3 Imagery[J]. Remote Sensing, 2020, 12:82. .
|
18 |
Peng Y, Zhang Z M, He G J, et al. An Improved GrabCut Method based on a Visual Attention Model for Rare-earth Ore Mining Area Recognition with High-resolution Remote Sensing Images[J]. Remote Sensing, 2019, 11:987. doi:10.3390/rs11080987.
doi: 10.3390/rs11080987
|
19 |
Zhu Guixiang. Ecological Compensation:the Need for Mineral Resources Exploitation and Environmental Restoration of Henan Province[J]. Natural Resource Economics of China, 2010,23(5):25-27.
|
19 |
朱桂香. 生态补偿:河南矿产资源开发与环境修复的需求[J]. 中国国土资源经济,2010,23(5):25-27.
|
20 |
Benz U C, Hofmann P, Willhauck G, et al. Multi-resolution, Object-oriented Fuzzy Analysis of Remote Sensing Data for GIS-ready Information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004,58(3-4):239-258.
|
21 |
Huang Xin. Multiscale Texture and Shape Feature Extraction and Object-oriented Classification for very High Resolution Remotely Sensed Imagery[D]. Wuhan: Wuhan university, 2009.
|
21 |
黄昕. 高分辨率遥感影像多尺度纹理、形状特征提取与面向对象分类研究[D]. 武汉:武汉大学, 2009.
|
22 |
Chen T, Trinder J C, Niu R Q. Object-oriented Landslide Mapping Using ZY-3 Satellite Imagery, Random Forest and Mathematical Morphology, for the Three-Gorges Reservoir, China[J]. Remote Sensing, 2017,9(4):333. doi:10.3390/rs9040333.
doi: 10.3390/rs9040333
|
23 |
LeCun Y, Kavukcuoglu K, Farabet C, Convolutional Networks and Applications in Vision[C]∥ IEEE International Symposium on Circuits and Systems, 2010: 253-256.
|
24 |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting[J]. Journal of Machine Learning Research, 2014,15:1929-1958.
|
25 |
Cuides Developer. Keras: The Python Deep Learning Library[EB/OL]. ,2021.
|
26 |
Cortes C, Vapnik V. Support-vector Networks[J]. Machine learning, 1995,20(3):273-297.
|
27 |
Wu Jianping, Yang Xingwei. Accuracy Analysis of Classification of Remotely Sensed Data[J].Remote Sensing Technology and Application,1995,10(1):17-24.
|
27 |
吴健平,杨星卫.遥感数据分类结果的精度分析[J].遥感技术与应用,1995,10(1):17-24.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|