Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (2): 342-352    DOI: 10.11873/j.issn.1004-0323.2021.2.0342
农业遥感专栏     
基于无人机观测的水稻冠层样方多角度反射特点分析
帅艳民1,2,3(),杨健1(),吴昊1,邵聪颖1,徐辛超1,刘明岳1,刘涛2,3,梁继4
1.辽宁工程技术大学 测绘与地理科学学院,辽宁 阜新 123000
2.中国科学院新疆生态与地理研究所 荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
3.中国科学院中亚生态与环境研究中心,新疆 乌鲁木齐 830011
4.湖南科技大学 地理信息技术国家地方联合工程实验室,湖南 湘潭 411201
Variation of Multi-angle Reflectance Collected by UAV over Quadrats of Paddy-field Canopy
Yanmin Shuai1,2,3(),Jian Yang1(),Hao Wu1,Congying Shao1,Xinchao Xu1,Mingyue Liu1,Tao Liu2,3,Ji Liang4
1.Liaoning Technical University,College of Surveying and Mapping and Geographic Science,Fuxin 123000,China
2.Xinjiang Institute of Ecology And Geography,Chinese Academy of Sciences,State Key Laboratory of Desert and Oasis Ecology,Urumqi 830011,China
3.Research Center for Ecology and Environment of Central Asia,Chinese Academy of Sciences,Urumqi 830011,China
4.Hunan University of Science and Technology,National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology,Xiangtan 411201,China
 全文: PDF(13588 KB)   HTML
摘要:

无人机平台成本低和灵活性高的优点可弥补传统遥感平台的缺陷,为农业遥感近地表数据获取提供有效途径。任何型号无人机搭载传感器进行数据采集时均有一定的观测几何,但无人机观测几何诱发的方向反射差异及其在后续应用中的潜在误差仍需深入分析。利用无人机采集典型扬花期水稻田样方多角度观测,探讨其样方级别的方向反射及可见光植被指数的方向特点。结果表明:红、绿、蓝三波段的方向反射率差异分别可高达30.17%、22.03%和27.31%,传递到后续可见光植被指数其相对误差可达62.08%,尤其是对归一化绿红差异指数(NGRDI)、可见光波段差异指数(VDVI)影响较大。研究发现,角度影响是基于无人机观测开展定量研究时不可忽视的重要因素。

关键词: 无人机遥感多角度观测可见光植被指数水稻    
Abstract:

UAV platform with features of low cost and high flexibility has the potential to reduce weakness of the traditional remote sensing platform, and provides an effective way to collect near-surface measurements for the agricultural remote sensing community. Any UAV-based observations have the incident-view observation geometry under arbitrary scenario, while there is still a lack to understand angle-effect on UAV-based observations as well its propagation in following applications. We organized a field experiment to acquire the quadrat-level multi-angle observation over the sampled flowering paddy canopy through UAV to investigate the uncertainty induced by angles. Our results show that the maximum relative difference can reach up to 30.17%, 22.03% and 27.31% respectively at red, green and blue band, the deviation is up to 62.08% in the calculated visible vegetation indices, especially for NGRDI and VDVI index with an elevated variation. The research shows that the angel-effect is an important factor that cannot be ignored in the quantitative research based on UAV observations.

Key words: UAV-based remote sensing    Multi-angle observations    Visible vegetation index    Paddy
收稿日期: 2019-11-06 出版日期: 2021-05-24
ZTFLH:  TP79  
基金资助: 辽宁省“兴辽计划”创新领军人才攀登学者项目(XLYC1802027);中国科学院百人计划(Y938091);湖南省自然科学基金(2018JJ2116);辽宁工程技术大学学科创新团队项目(LNTU20TD-23)
通讯作者: 杨健     E-mail: min_shuai@163.com;yangjiancumt@126.com
作者简介: 帅艳民(1973-),女,山东菏泽人,教授,博士生导师,主要从事定量遥感、地表二向性反射等研究。E?mail: min_shuai@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
帅艳民
杨健
吴昊
邵聪颖
徐辛超
刘明岳
刘涛
梁继

引用本文:

帅艳民,杨健,吴昊,邵聪颖,徐辛超,刘明岳,刘涛,梁继. 基于无人机观测的水稻冠层样方多角度反射特点分析[J]. 遥感技术与应用, 2021, 36(2): 342-352.

Yanmin Shuai,Jian Yang,Hao Wu,Congying Shao,Xinchao Xu,Mingyue Liu,Tao Liu,Ji Liang. Variation of Multi-angle Reflectance Collected by UAV over Quadrats of Paddy-field Canopy. Remote Sensing Technology and Application, 2021, 36(2): 342-352.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.2.0342        http://www.rsta.ac.cn/CN/Y2021/V36/I2/342

图1  实验区域的地理位置图
图2  实验流程图
图3  无人机数据采集示意图
误差X/dmY/dmZ/dm
最小值±0.11±0.10±0.03
最大值±0.60±0.42±0.12
平均值±0.17±0.15±0.04
表1  空三解算质量统计
图4  传感器中心误差椭圆分布
图5  区域DSM模型图
图6  区域DOM影像图
样方中心点X(m)中心点Y(m)中心点Z(m)范围大小(m×m)像元范围(p×p)
146610364062241745×5100×100
246610654062651745×5100×100
表2  水稻样方的基本数据
图7  水稻样方对应的影像分布
图8  样方1和样方2角度采样示意图(方位角以正北为0°,顺时针为正;天顶角以中心为天顶0°,10度间隔的圆环表示)
编号项目红(R)波段反射率/%绿(G)波段反射率/%蓝(B)波段反射率/%
样方1平均值18.8322.5013.38
最大值22.1124.8115.92
最小值13.2417.889.92
最大偏差值29.6820.5325.84
均方根误差2.641.912.00
样方2平均值16.9420.2412.94
最大值20.0122.4915.69
最小值11.8315.789.41
最大偏差值30.1722.0327.31
均方根误差2.371.751.88
表3  不同观测方向红绿蓝波段反射值统计
图9  水稻样方1和样方2冠层RGB三波段方向反射率拟合图
图10  水稻冠层不同观测平面反射率曲线
波段名称观测平面各向异性指数波段名称观测平面各向异性指数
样方1波段R主平面1.11样方2波段R主平面1.05
垂直主平面1.58垂直主平面1.52
垂垄平面1.10垂垄平面1.09
顺垄平面1.45顺垄平面1.40
最大值1.58最大值1.52
样方1波段G主平面1.15样方2波段G主平面1.11
垂直主平面1.35垂直主平面1.29
垂垄平面1.11垂垄平面1.10
顺垄平面1.25顺垄平面1.21
最大值1.35最大值1.29
样方1波段B主平面1.17样方2波段B主平面1.20
垂直主平面1.55垂直主平面1.59
垂垄平面1.09垂垄平面1.16
顺垄平面1.50顺垄平面1.46
最大值1.55最大值1.59
表4  不同观测平面各向异性指数
编号项目GRRIGBRINGRDIVDVI
样方1平均值1.211.700.090.17
最大值1.352.030.150.24
最小值1.101.470.050.12
最大偏差11.98%18.95%62.08%39.31%
样方2平均值1.211.580.090.15
最大值1.341.880.150.22
最小值1.101.370.050.11
最大偏差11.17%19.21%58.14%42.47%
表5  不同观测方位对植被指数的影响
图11  NGRDI和VDVI植被指数拟合图
1 Shi Zhou, Liang Zongzheng, Yang Yuanyuan, et al. Status and Prospect of Agricultural Remote Sensing[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(2):247-260.
1 史舟,梁宗正,杨媛媛, 等.农业遥感研究现状与展望[J].农业机械学报,2015,46(2):247-260.
2 Liu Zhong, Wan Wei, Huang Jinyu, et al. Progress on Key Parameters Inversion of Crop Growth based on Unmanned Aerial Vehicle Remote Sensing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(24): 60-71.
2 刘忠,万炜,黄晋宇, 等.基于无人机遥感的农作物长势关键参数反演研究进展[J].农业工程学报,2018,34(24):60-71.
3 Li Deren, Li Ming. Research Advanceand Application Prospect of Unmanned Aerial Vehicle Remote Sensing System[J]. Geomatics and Information Science of Wuhan University,2014,39(5):505-513.
3 李德仁,李明.无人机遥感系统的研究进展与应用前景[J].武汉大学学报(信息科学版),2014,39(5):505-513.
4 Wang Xiaoqin, Wang Miaomiao, Wang Shaoqiang, et al. Extraction of Vegetation Information from Visible Unmanned Aerial Vehicle Images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 152-159.
4 汪小钦,王苗苗,王绍强, 等.基于可见光波段无人机遥感的植被信息提取[J].农业工程学报,2015,31(5):152-159.
5 Bian Xue, Ma Qunyu, Liu Chuye, et al. Vegetation Coverage Calculation based on Low Altitude Visible Spectrum[J]. Bulletin of Soiland Water Conservation, 2017,37(5):270-275.
5 卞雪,马群宇,刘楚烨, 等.基于低空可见光谱的植被覆盖率计算[J].水土保持通报,2017,37(5):270-275.
6 Zhao Jing, Yang Huanbo, Lan Yubin, et al. Extraction Method of Summer Corn Vegetation Coverage based on Visible Light Image of Unmanned Aerial Vehicle[J]. Transactions of the Chinese Society for Agricultural, 2019,50(5):232-240.
6 赵静,杨焕波,兰玉彬, 等.基于无人机可见光图像的夏季玉米植被覆盖度提取方法[J].农业机械学报,2019,50(5):232-240.
7 Liu Shuaibing, Yang Guijun, Jing Haitao, et al. Retrieval of Winter Wheat Nitrogen Content based on UAV Digital Image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(11): 75-85.
7 刘帅兵,杨贵军,景海涛, 等.基于无人机数码影像的冬小麦氮含量反演[J].农业工程学报,2019,35(11):75-85.
8 Liu Qian, Xiao Qing, Liu Zhigang, et al. Image Processing Method of Airborne WiDAS Sensor in WATER Campaign[J]. Remote Sensing Technology and Application , 2010,25(6):797-804.
8 刘强,肖青,刘志刚, 等. 黑河综合遥感联合试验中机载WiDAS数据的预处理方法[J]. 遥感技术与应用,2010,25(6):797-804.
9 Zhang Zhouwei, Yu Tao, Meng Qingyan, et al. Image Quality Evaluation of Multi-scale Resampling in Geometric Correction[J]. Journal of Hua Zhong Normal University(Natural Science Edition),2013,47(3):426-430.
9 张周威,余涛,孟庆岩,等.空间重采样方法对遥感影像信息影响研究[J]. 华中师范大学学报(自然科学版),2013,47(3):426-430.
10 Zhang Chuang, Donghui Lü, Xu Chaojing. Computation for Solar Real-time Position and Its Application in Illuminant Direction of Image[J]. Electronic Measurement Technology,2010,33(11):87-89+93.
10 张闯,吕东辉,顼超静.太阳实时位置计算及在图像光照方向中的应用[J].电子测量技术,2010,33(11):87-89+93.
11 Wang Guoan,Mi Hongtao,Deng Tianhong, et al. Calculation of the Change Range of the Sun High Angle and the Azimuth of Sunrise and Sunset in One Year[J]. Meteorological and Environmental Sciences,2007(S1):161-164.王国安,米鸿涛,邓天宏, 等.太阳高度角和日出日落时刻太阳方位角一年变化范围的计算[J].气象与环境科学,2007():161-164.
12 Zhang Xuehong, Tian Qingjiu, Shen Runping. Analysis of Directional Characteristics of Winter Wheat Canopy Spectra[J]. Spectroscopy and Spectral Analysis, 2010,30(6):1600-1605.
12 张雪红,田庆久,沈润平. 冬小麦冠层光谱的方向性特征分析[J]. 光谱学与光谱分析,2010,30(6):1600-1605.
13 Xia Xiuli, Pan Jie, Gao Xiaoqian, et al. Analysis of the Directional Characteristics of the Reflection Spectrum of Black Pine Canopy[J]. Spectroscopy and Spectral Analysis,2019,39(8):2540-2545.
13 夏秀丽,潘洁,高晓倩,等.黑松冠层反射光谱方向特征分析[J].光谱学与光谱分析,2019,39(8):2540-2545.
14 Jiao Ziti. The Use of MODIS BRDF/Albedo Products to Recover Land Surface Properties[D]. Beijing: Beijing Normal University,2008.
14 焦子锑.应用MODIS BRDF和反照率产品进行地表特性的研究[D].北京:北京师范大学,2008.
15 Gamon J A, Surfus J S. Assessing Leaf Pigment Content and Activity with a Reflectometer[J]. New Phytologist, 1999, 143(1):105-117.
16 Sellaro R, Crepy M, Trupkin S A. Cryptochrome as a Sensor of the Blue/Green Ratio of Natural Radiation[J]. Plant Physiology,2010,154(1):401-409.
17 Gitelson A A, Kaufman Y J, Stark R, et al. Novel Algorithms for Remote Estimation of Vegetation Fraction[J]. Remote Sensing of Environment, 2002, 80(1):76-87.
18 Wang Feilong, Wang Fumin, Hu Jinghui, et al. Estimating and Mapping Rice Yield Using UAV-Hyperspectral Imager Based Relative Spectral Variates[J]. Remote Sensing Technology and Application, 2020, 35(2): 458-468.
18 王飞龙,王福民,胡景辉,等. 基于相对光谱变量的无人机遥感水稻估产及产量制图[J]. 遥感技术与应用, 2020, 35(2): 458-468.
19 Xia Yan, Huang Liang, Wang Xiaoxuan, et al. Fine Extraction of Tobacco based on UAV Images[J]. Remote Sensing Technology and Application, 2020, 35(5): 1158-1166.
19 夏炎,黄亮,王枭轩,等. 基于无人机影像的烟草精细提取[J]. 遥感技术与应用, 2020, 35(5): 1158-1166.
20 Shuai Y, Tuerhanjiang L, Shao C, et al. Re-understanding of Land Surface Albedo and Related Terms in Satellite-based Retrievals[J]. Big Earth Data, 2020(5):1-23.
21 Cheng Xue, He Bingyan, Huang Yaohuan, et al. Estimation of Corn Leaf Area Index based on UAV Hyperspectral Image[J]. Remote Sensing Technology and Application,2019,34(4):775-784.
21 程雪,贺炳彦,黄耀欢,等.基于无人机高光谱数据的玉米叶面积指数估算[J].遥感技术与应用, 2019, 34(4):775-784.
[1] 王飞龙,王福民,胡景辉,谢莉莉,谢京凯. 基于相对光谱变量的无人机遥感水稻估产及产量制图[J]. 遥感技术与应用, 2020, 35(2): 458-468.
[2] 奚雷, 单楠, 杨沈斌, 张永光. 基于SCOPE模型的水稻不同生育期日光诱导叶绿素荧光及GPP模拟研究[J]. 遥感技术与应用, 2019, 34(3): 488-499.
[3] 谢京凯,王福民,王飞龙,张东尼. 面向水稻LAI监测的植被指数土壤调节参数修正[J]. 遥感技术与应用, 2018, 33(2): 342-350.
[4] 何艺,周小成,黄洪宇,许雪琴. 基于无人机遥感的亚热带森林林分株数提取[J]. 遥感技术与应用, 2018, 33(1): 168-176.
[5] 雷小雨,卓莉,叶涛,陶海燕,王芳. 基于时差特征与随机森林的水稻种植面积提取[J]. 遥感技术与应用, 2016, 31(6): 1140-1149.
[6] 张细燕,何隆华. 基于SAR与Landsat TM的小区域稻田的识别研究—以南京市江宁区为例[J]. 遥感技术与应用, 2015, 30(1): 43-49.
[7] 于 欢,孔 博. 无人机遥感影像自动无缝拼接技术研究[J]. 遥感技术与应用, 2012, 27(3): 347-352.
[8] 李坤,邵芸,张风丽. 基于RadarSat-2全极化数据的水稻识别[J]. 遥感技术与应用, 2012, 27(1): 86-93.
[9] 李鹏,姜鲁光,封志明. 不同辐射校正水平下水稻植被指数监测对比分析[J]. 遥感技术与应用, 2012, 27(1): 121-127.
[10] 陈燕丽,莫伟华,莫建飞,王君华,钟仕全. 基于面向对象分类的南方水稻种植面积提取方法[J]. 遥感技术与应用, 2011, 26(2): 163-168.
[11] 钟仕全, 莫建飞, 陈燕丽, 李 莉. 基于HJ-1B卫星遥感数据的水稻识别技术研究[J]. 遥感技术与应用, 2010, 25(4): 464-468.
[12] 郑长春,王秀珍,黄敬峰. 基于特征波段的SPOT-5卫星影像水稻面积信息自动提取的方法研究[J]. 遥感技术与应用, 2008, 23(3): 294-299.
[13] 杨 燕,田庆久. 水稻LAI参数的Hyperion反演研究[J]. 遥感技术与应用, 2007, 22(3): 345-350.
[14] 吕雄杰,潘剑君,张佳宝,任红艳. 水稻冠层光谱特征及其与LAI的关系研究[J]. 遥感技术与应用, 2004, 19(1): 24-29.
[15] 金震宇,田庆久,惠凤鸣,陆建飞. 水稻叶绿素浓度与光谱反射率关系研究[J]. 遥感技术与应用, 2003, 18(3): 134-137.