Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (4): 791-802    DOI: 10.11873/j.issn.1004-0323.2021.4.0791
数据与图像处理     
珠海一号欧比特高光谱数据交叉辐射定标初探
吴颉1,2,3(),陈楚群1,2,3(),刘叶取1,3
1.热带海洋环境国家重点实验室,广东省海洋遥感重点实验室,中国科学院南海海洋研究所,广东 广州 510301
2.南方海洋科学与工程广东省实验室(广州),广东 广州 511458
3.中国科学院大学,北京 100049
The Preliminary Study of the Radiometric Cross-calibration of Zhuhai-1/OHS
Jie Wu1,2,3(),Chuqun Chen1,2,3(),Yequ Liu1,3
1.State Key Laboratory of Tropical Oceanography,Guangdong Key Laboratory of Ocean Remote Sensing,South China Sea Institute of Oceanology,Chinese Academy of Sciences,Guangzhou 510301,China
2.Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),Guangzhou 511458,China
3.University of Chinese Academy of Sciences,Beijing 100049,China
 全文: PDF(4303 KB)   HTML
摘要:

搭载于“珠海一号”卫星星座的欧比特高光谱OHS(Orbit Hyper Spectral)传感器,以较高的光谱分辨率和空间分辨率,在近岸及内陆湖泊水色遥感应用方面具有很大潜力。然而OHS缺乏星上定标系统,目前在轨定标采用陆地定标场的资料,其定标结果在水体等低反射率地物误差较大。因此提出一种基于传感器入瞳总辐亮度的交叉辐射定标法,该方法结合QAA(Quasi-Analytical Algorithm)准分析算法和6SV2.1辐射传输模型,利用GOCI(Geostationary Ocean Color Imager)多光谱数据对OHS高光谱数据进行交叉辐射定标。研究结果表明:①GOCI和OHS传感器获取的地物辐射相关性好,在可见光波段范围内,R2均高于0.84;②重新定标后的数据能明显改善不同传感器之间的辐射差异,在可见光波段范围内,定标误差小于9%。实验为高光谱传感器的辐射定标提供了一种新的方法,对建立高光谱定量化、业务化水色遥感处理系统,特别对OHS数据在水域的各种应用具有重要意义。

关键词: 欧比特高光谱(OHS)珠海一号交叉辐射定标高光谱QAA    
Abstract:

The Orbit Hyper Spectral (OHS) sensor, with high spectral and spatial resolution, is equipped on the Zhuhai-1 satellite constellation. It exhibits considerable advantages when monitoring the environment changes of coastal waters and inland lakes. However, OHS has no on-board calibration systems, the in-orbit vicarious calibration using field measurement was conducted but the result may not suitable for low reflectance target like waters. In this paper, we propose a total radiance-based cross-calibration method for OHS by using QAA (Quasi-Analytical Algorithm) marine optical model and 6SV2.1 radiative transfer model. This method makes the multiple-spectral sensor GOCI (Geostationary Ocean Color Imager) can be used for the radiometric cross-calibration of the hyperspectral sensor OHS. The result shows that the radiance observed by GOCI and OHS are highly correlated, with the R2 higher than 0.84 at the visible bands. It also indicates the new calibration method can reduce the radiance differences between GOCI and OHS. The calibration errors are less than 9% at the visible bands. This study provides a new method for radiometric calibration of hyperspectral sensors and has important significance for quantitative application of hyperspectral sensors, particularly for the quantitative remote sensing of waters using OHS data.

Key words: Orbit Hyper Spectral (OHS)    Zhuhai-1    Radiometric cross-calibration    Hyperspectral    QAA
收稿日期: 2020-04-29 出版日期: 2021-09-26
ZTFLH:  TP701  
基金资助: 国家自然科学基金-广东联合基金(U1901215);国家重点研发计划“海洋环境安全保障”重点专项(2018YFC1406604);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0305);广州市科技计划项目(201707020031)
通讯作者: 陈楚群     E-mail: wujie@scsio.ac.cn;cqchen@scsio.ac.cn
作者简介: 吴颉(1992—),女,湖南长沙人,博士研究生, 主要从事海洋水色遥感大气校正研究。E?mail: wujie@scsio.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴颉
陈楚群
刘叶取

引用本文:

吴颉,陈楚群,刘叶取. 珠海一号欧比特高光谱数据交叉辐射定标初探[J]. 遥感技术与应用, 2021, 36(4): 791-802.

Jie Wu,Chuqun Chen,Yequ Liu. The Preliminary Study of the Radiometric Cross-calibration of Zhuhai-1/OHS. Remote Sensing Technology and Application, 2021, 36(4): 791-802.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.4.0791        http://www.rsta.ac.cn/CN/Y2021/V36/I4/791

图1  2019年5月7日黄河口附近GOCI和OHS影像的假彩色合成图
图2  GOCI(黑色实线)与OHS(彩色虚线)的光谱响应函数曲线
图3  OHS各波段的H2O和O2大气透过率(6SV2.1中纬度夏季大气)
通道中心波长/nm通道中心波长/nm
B01466B17716
B02480B18730
B03500B19746
B04520B20760
B05536B21776
B06550B22790
B07566B23806
B08580B24820
B09596B25836
B10610B26850
B11626B27866
B12640B28880
B13656B29896
B14670B30910
B15686B31926
B16700B32940
表1  OHS波段及其中心波长
步骤参数描述计算公式
0Rrs(λ)水面以上遥感反射率GDPS产品
1rrs(λ)水面以下遥感反射率rrs(λ)=Rrs(λ)0.52+1.7Rrs(λ)
2u(λ)中间参数u(λ)=-g0+[(g0)2+4g1rrs(λ)]122g1
3a(555)555 nm处的总吸收系数GDPS产品
4bbp(555)555 nm处的悬浮物后向散射系数bbp(555)=u(555)a(555)1-u(555)-bbw(555)
5Y中间参数Y=2.0{1-1.2exp[-0.9rrs(443)rrs(555)]}
6bbp(λ)任一波段的悬浮物后向散射系数bbp(λ)=bbp(555)(555λ)Y
7a(λ)任一波段的总吸收散射系数a(λ)=[1-u(λ)][bbw(λ)+bbp(λ)]u(λ)
8ζ=aφ(412) / aφ(443)中间参数ζ=0.74+0.020.8+rrs(443)/rrs(555)
9ξ=ag(412) / ag(443)中间参数

ξ=exp[S(443-412)]

其中:S=0.015+0.0020.6+rrs(443)rrs(555)

10ag(443)443 nm处的黄色物质的吸收系数ag(443)=a(412)-ζa(443)ξ-ζ-aw(412)-ζaw(443)ξ-ζ
11adg(λ)任一波段的黄色物质及碎屑的吸收系数adg(λ)=ag(443)exp[-S(λ-443)]
12aφ(λ)任一波段的浮游动植物的吸收系数aφ(λ)=a(λ)-adg(λ)-aw(λ)
表2  QAA算法的步骤及公式
图4  不同浑浊程度水体的Rrs光谱(三角表示GOCI的Rrs光谱,实线为QAA推导得到连续的Rrs光谱,圆圈为模拟得到OHS的Rrs光谱)
图5  QAA算法模拟的OHS各波段的Rrs光谱
图6  黄河口附近风场分布图
图7  模拟的OHS各波段入瞳总辐亮度光谱
图8  OHS各波段模拟的LtSim与DN值的散点图(LtSim的单位为W m-2 μm-1 sr-1)
通道

波长

/nm

原增益

参数

原偏移

参数

新增益

参数

新偏移

参数

B014662.133 570.000 002.288 37-58.008 77
B024802.136 690.000 002.178 79-59.640 03
B035002.054 750.000 002.099 15-72.476 00
B045201.980 290.000 002.213 27-101.897 95
B055361.965 190.000 001.941 30-89.075 23
B065501.711 480.000 001.702 05-79.354 42
B075661.211 360.000 001.289 65-63.379 83
B085801.100 810.000 001.216 58-62.749 13
B106100.837 170.000 000.848 97-42.756 69
B116260.695 210.000 000.794 45-45.912 87
B126400.626 680.000 000.729 69-45.576 01
B146700.491 470.000 000.555 06-38.589 16
B197450.328 490.000 000.442 65-32.810 31
B217760.320 900.000 000.397 74-28.622 44
B268500.360 550.000 000.170 69-5.085 50
B278660.372 980.000 000.148 90-3.393 56
表3  OHS各通道的原、新增益参数和偏移参数值
图9  新的定标结果LtOHS与模拟的LtSim的散点图LtSim和LtOHS的单位为W m-2 μm-1 sr-1
图10  在不同浑浊程度水体,OHS原、新定标的瑞利校正反射率与GOCI的瑞利校正反射率对比
1 Li S T, Song W W, Fang L Y, et al. Deep learning for Hyperspectral image classification: an overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57: 6690-6709.
2 Sun Liwei. Research on radiometric calibration for space Hyperspectral remote sensor[D]. Beijing: University of Chinese Academy of Sciences, 2018.
2 孙立微. 空间高光谱遥感仪器辐射定标技术研究[D]. 北京:中国科学院大学, 2018.
3 Gong Hui, Tian Guoliang, Yu Tao, et al. Radiometric calibration and validation of CCD cameras on HJ-1 satellite[J]. Remote Sensing Technology and Application, 2011, 26(5): 682-688.
3 巩慧, 田国良, 余涛, 等. HJ-1星CCD相机场地辐射定标与真实性检验研究[J]. 遥感技术与应用, 2011, 26(5): 682-688.
4 Gao C X, Jiang X G, Li X B, et al. The Cross-calibration of CBERS-02B/CCD visible-near infrared channels with Terra/MODIS channels[J]. International Journal of Remote Sensing, 2013, 34: 3688-3698.
5 Liu Q Y, Yu T, Gao H L. Radiometric Cross-calibration of GF-1 PMS sensor with a new BRDF model[J]. Remote Sensing, 2019, 11. DOI: 10.3390/rs11060707.
doi: 10.3390/rs11060707
6 Zhang H, Zhang B, Chen Z C, et al. Vicarious radiometric calibration of the Hyperspectral imaging microsatellites SPARK-01 and -02 over Dunhuang, China[J]. Remote Sensing , 2018, 10(1). DOI: 10.3390/rs10010120.
doi: 10.3390/rs10010120
7 Gao H L, Jupp D, Qin Y, et al. Cross-Calibration of the HSI sensor reflective solar bands using Hyperion data[J]. IEEE Transactions on geoscience and Remote Sensing, 2015, 53(7): 4127-4137.
8 Zhang Meng, Wei Wei, Zhang Yanna, et al. On-orbit automated calibration of Hyperion Hyperspectral remote sennsing[J]. Acta Optica Sinica, 2019, 39(5): 332-340.
8 张孟, 韦玮, 张艳娜, 等. Hyperion高光谱遥感器的在轨自动化定标[J]. 光学学报, 2019, 39(5): 332-340.
9 Hu C M, Muller-Karger F E, Andrefouet S, et al. Atmospheric correction and cross-calibration of Landsat-7/ETM+ imagery over aquatic environments: a multiplatform approach using SeaWiFS/MODIS[J]. Remote Sensing of Environment, 2001, 78(1-2): 99-107.
10 Li J, Feng L, Pang X P, et al. Radiometric cross calibration of gaofen-1 WFV cameras using Landsat-8 OLI images: a simple image-based method[J]. Remote Sensing, 2016, 8(5). DOI: 10.3390/rs8050411.
doi: 10.3390/rs8050411
11 Feng L, Li J, Gong W S, et al. Radiometric cross-calibration of Gaofen-1 WFV cameras using Landsat-8 OLI images: a solution for large view angle associated problems[J]. Remote Sensing of Environment, 2016, 174: 56-68.
12 Pan D L, He X Q, Zhu Q K. In-orbit cross-calibration of HY-1A satellite sensor COCTS[J]. Chinese Science Bulletin, 2004, 49: 2521-2526.
13 Zhou Q, Tian L Q, Li J, et al. Radiometric cross-calibration of tiangong-2 MWI Visible/NIR channels over aquatic environments using MODIS[J]. Remote Sensing, 2018, 10(11). DOI: 10.3390/rs10111803.
doi: 10.3390/rs10111803
14 IOCCG. Mission requirements for future ocean-colour sensors[R]. Reports of the International Ocean-Colour Coordinating Group, No. 13,
14 IOCCG, Dartmouth, Canada, 2012.
15 Ryu J H, Han H J, Cho S, et al. Overview of Geostationary Ocean Color Imager(GOCI) and GOCI data processing system(GDPS)[J].Ocean Science Journal,2012,47(3):223-233.
16 Kang G, Coste P, Youn H, et al. An In-Orbit fadiometric Calibration method of the Geostationary Ocean Color Imager[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4322-4328.
17 Ahn Y H, Han H J, Yang H Y, et al. GOCI level 2 ocean color products (GDPS 1.3) brief algorithm description[EB/OL]. 2014, .
18 Ahn J H, Park Y J, Kim W, et al. Vicarious calibration of the Geostationary Ocean Color Imager[J]. Optics Express, 2015, 23(18): 23236-23258.
19 Eplee R E, Robinson W D, Bailey S W, et al. Calibration of SeaWiFS. II. vicarious techniques[J]. Applied Optics, 2001, 40(36): 6701-6718.
20 唐军武, 顾行发, 牛生丽, 等. 基于水体目标的CBERS-02卫星CCD相机与MODIS的交叉辐射定标[J]. 中国科学E辑:信息科学, 2005, 35(): 59-69.
21 Lee Z P, Carder K L, Arnone R A. Deriving inherent optical properties from water color: a multiband Quasi-Analytical algorithm for optically deep waters[J]. Applied Optics, 2002, 41(27): 5755-5772.
22 Bai Yan, Cui Tingwei, Feng Lian, et al. Overview of ocean color[M]. Xiamen:Xiamen University Press, 2018: 10-16.白雁, 崔廷伟, 冯炼, 等. 水色学概览[M]. 厦门:厦门大学出版社, 2018: 10-16.
23 Zhang X D, Hu L B, He M X. Scattering by pure seawater: effect of salinity[J]. Optics Express, 2009, 17(7): 5698-5710.
24 Kou L H, Labrie D, Chylek P. Refractive-indexes of water and ice in the 0.65-Mu-M to 2.5-Mu-M spectral range[J]. Applied Optics , 1993, 32(19): 3531-3540.
25 Pope R M, Fry E S. Absorption spectrum (380~700 nm) of pure water. II. integrating cavity measurements[J]. Applied Optics, 1997, 36(33): 8710-8723.
26 Ahn J H, Park Y J, Ryu J H, et al. Development of atmospheric correction slgorithm for Geostationary Ocean Color Imager (GOCI)[J]. Ocean Science Journal, 2012, 47(3): 247-259.
27 Hao Yanling. Detection of hourly variablility of bio-optical properties in the Yellow River estuary by geostationary satellite ocean color images[D]. Qingdao: Ocean University of China, 2012.
27 郝艳玲.黄河口水体生物光学性质逐时变化的静止海洋水色卫星遥感探测研究[D]. 青岛:中国海洋大学, 2012.
28 Buri Shun , Qing Song, Hao Yanling. Remote sensing retrieval of suspended particulate matter concentrations in Yellow River estuary based on semi-analytical method[J]. Marine Sciences, 2019, 43(12):17-27.
28 顺布日,青松,郝艳玲.基于半分析方法的黄河口悬浮物浓度遥感反演[J].海洋科学,2019,43(12):17-27.
29 Kotchenova S Y, Vermote E F, R Matarreseet al. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance[J]. Applied Optics, 2016, 45(26): 6762-6774.
30 Vermote E, Tanre D, Deuze J L, et al. 6S manual part 1 [EB/OL]. 2016, .
31 Li P, Ke Y H, Bai J H, et al. Spatiotemporal dynamics of suspended particulate matter in the Yellow River Estuary, China during the past two decades based on time-series Landsat and Sentinel-2 data[J]. Marine Pollution Bulletin, 2019, 149:110518.1-110518.15.
32 Xie Fei, Guo Ziqi, Tian Ye, et al. Retrieving inherent optical properties of lake kuncheng based on Quasi analytical algorithm[J]. Remote Sensing Technology and Application, 2015, 30(2): 242-250.
32 谢飞,郭子祺,田野,等.基于QAA算法的昆承湖固有光学量反演模型[J].遥感技术与应用,2015,30(2):242-250.
33 Zhang Minwei, Dong Qing, Tang Junwu, et al. Study on using apparent spectrum to retrieve the inherent optical properties of ocean water[J]. Spectroscopy and Spectral Analysis, 2011, 31(5):1403-1408.
33 张民伟,董庆,唐军武,等.基于表观光谱反演黄东海水体固有光学量研究[J].光谱学与光谱分析,2011,31(5):1403-1408.
34 Lee Z P.Update of the Quasi-analytical algorithm (QAA_v6) [EB/OL].2014,.
35 Wang Y C, Shen F, Sokoletsky L, et al. Validation and calibration of QAA algorithm for CDOM absorption retrieval in the Changjiang(Yangtze) estuarine and coastal waters[J]. Remote Sensing, 2017, 9. DOI: 10.3390/rs9111192.
doi: 10.3390/rs9111192
36 Le C F, Li Y M, Zha Y, et al. Validation of a Quasi-Analytical algorithm for highly turbid eutrophic water of Meiliang Bay in Taihu Lake, China[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2492-2500.
37 Gordon H R, Wang M H. Retrieval of water-leaving radiance and aerosol Optical-thickness over the oceans with Seawifs-a preliminary algorithm[J].Applied Optics,1994,33:443-452.
[1] 刘鹤,顾玲嘉,任瑞治. 基于无人机遥感技术的森林参数获取研究进展[J]. 遥感技术与应用, 2021, 36(3): 489-501.
[2] 李宝芸,范玉刚,杨明莉. 基于LFDA和GA-ELM的高光谱图像地物识别方法研究[J]. 遥感技术与应用, 2021, 36(3): 587-593.
[3] 曾子倩,蒋耿明. FY-3C MWRI在轨交叉辐射定标[J]. 遥感技术与应用, 2021, 36(3): 682-691.
[4] 尹捷,周雷雷,李利伟,张雅琼,黄文江,张赫林,王岩,郑诗军,范海生,纪婵,陈俊杰,彭代亮. 多源遥感数据小麦识别及长势监测比较研究[J]. 遥感技术与应用, 2021, 36(2): 332-341.
[5] 阿依努尔·麦提努日null,麦麦提吐尔逊·艾则孜null,麦尔哈巴·图尔贡null,李新国. 吐鲁番盆地葡萄园土壤重金属铅含量高光谱估算[J]. 遥感技术与应用, 2021, 36(2): 362-371.
[6] 邵文静,孙伟伟,杨刚. 高光谱遥感影像纹理特征提取的对比分析[J]. 遥感技术与应用, 2021, 36(2): 431-440.
[7] 虞瑶,苏红军,姚文静. 基于Boosting的高光谱遥感切空间协同表示集成学习方法[J]. 遥感技术与应用, 2020, 35(3): 634-644.
[8] 王飞龙,王福民,胡景辉,谢莉莉,谢京凯. 基于相对光谱变量的无人机遥感水稻估产及产量制图[J]. 遥感技术与应用, 2020, 35(2): 458-468.
[9] 左成欢,赵辽英,陆海强,厉小润. 由粗到细的高光谱图像多端元光谱混合分析[J]. 遥感技术与应用, 2019, 34(6): 1305-1314.
[10] 许宁,胡玉新,耿修瑞. 凸体几何光谱解混研究进展及若干问题浅析[J]. 遥感技术与应用, 2019, 34(5): 1028-1039.
[11] 贺军亮,崔军丽,张淑媛,李仁杰,查勇. 基于偏最小二乘的土壤重金属铜含量高光谱估算[J]. 遥感技术与应用, 2019, 34(5): 998-1004.
[12] 程雪,贺炳彦,黄耀欢,孙志刚,李鼎,朱婉雪. 基于无人机高光谱数据的玉米叶面积指数估算[J]. 遥感技术与应用, 2019, 34(4): 775-784.
[13] 周龙飞,张云鹤,成枢,顾晓鹤,杨贵军,孙乾,束美艳. 不同生育期倒伏胁迫下玉米叶面积指数高光谱响应解析[J]. 遥感技术与应用, 2019, 34(4): 766-774.
[14] 张晓光,姜子璇,孔繁昌. 滨海盐渍土可见近红外高光谱特征[J]. 遥感技术与应用, 2019, 34(4): 816-821.
[15] 李琼琼, 柳云龙. 城市居民区土壤重金属含量高光谱反演研究[J]. 遥感技术与应用, 2019, 34(3): 540-546.