Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (4): 838-846    DOI: 10.11873/j.issn.1004-0323.2021.4.0838
遥感应用     
基于SBAS-InSAR技术的西宁地表形变监测
安炳琪1(),罗海滨1(),丁海勇1,张志山2,王伟3,史潇4,柯福阳1,王明明5
1.南京信息工程大学 遥感与测绘工程学院,江苏 南京 210044
2.西宁市测绘院,青海 西宁 810008
3.西宁市国土勘测规划研究院,青海 西宁 810008
4.江苏省气象服务中心,江苏 南京 210008
5.江苏科博空间信息科技有限公司,江苏 南京 210044
Monitoring of Surface Deformation in Xining based on SBAS-InSAR
Bingqi An1(),Haibing Luo1(),Haiyong Ding1,Zhishan Zhang2,Wei Wang3,Xiao Shi4,Fuyang Ke1,Mingming Wang5
1.School of Remote Sensing & Geomatics Engineering,NUIST,Nanjing 210044,China
2.Xining Surveying and Mapping Institute,Xining 810008,China
3.Xining Land Surveying and Planning Research Institute,Xining 810008,China
4.Jiangsu Meteorological Service Center,Nanjing 210008,China
5.Jiangsu Kebo Space Information Technology Co. ,Ltd. ,Nanjing 210044,China
 全文: PDF(6104 KB)   HTML
摘要:

地表形变引发的地质灾害给自然环境和社会带来了巨大威胁,小基线集合成孔径雷达干涉测量(SBAS-InSAR)技术以其监测精度高、监测范围大和非接触等优势,成为地表形变监测的重要手段,为预防地质灾害发生、降低灾害损失,实现地表形变有效监测具有重要意义。利用SBAS-InSAR技术对青海省西宁市2018年1月7日至11月27日27景Sentinel-1A数据进行处理,得到西宁市地表平均形变速率分布图。与同期8个西宁南山GPS地面观测点比较,除一个点误差较大外,其余7个点均方根误差都在3 mm以内,证明了SBAS-InSAR监测结果的可靠性。SBAS-InSAR监测结果表明:山体滑坡是西宁市地表形变的主要形式,特别是沿互助北山和G6京藏高速公路一带滑坡运动尤为明显。实验首次获取了西宁市火车站东北滑坡灾害点定量形变数据,为分析该灾害点状况、保障西宁火车站安全运行提供有价值的参考。

关键词: SBAS-InSAR地表形变GPS西宁市滑坡灾害预测    
Abstract:

Geological disasters caused by surface deformation pose a great threat to the natural environment and society.SBAS-InSAR technology has become an important means of surface deformation monitoring with its advantages of high monitoring accuracy, large monitoring range and non-contact,to prevent geological disaster and reducing disaster losses, achieve the surface deformation monitoring is importmant.In this paper, the SBAS-InSAR technology was used to process sentinel-1A data acquired during January 7, 2018 and November 27, 2018 in Xining city, Qinghai province. The average surface deformation velocity distribution map was obtained. The deformations obtained by SBAS-InSAR were compared with those obtained by 8 GPS observation stations which were installed to monitor the deformation of NanShan in Xining. Except for one GPS stations, the RMS errors on the other 7 GPS stations are within 3 mm, which proves the reliability of SBAS-InSAR. Based on the SBAS-InSAR monitoring results, it is pointed out that the landslide is the main form of ground deformation in Xining city, especially along the Mutual aid beishan and G6 highway. The quantitative deformation data on a landslide which is in northeast of Xining railway station were obtained for the first time. The quantitative deformation data are important to the deformation analysis of the landslide and the safe operation of Xining railway station.

Key words: SBAS-InSAR    Surface deformation    GPS    Xining city    Landslide prediction
收稿日期: 2020-06-12 出版日期: 2021-09-26
ZTFLH:  P237  
基金资助: 国家自然科学基金项目(41571350);西宁市科技计划项目(2019?Y?12);江苏省自然资源厅科技项目(KJXM2019035)
通讯作者: 罗海滨     E-mail: 1600602267@qq.com;hbluo@nuist.edu.cn
作者简介: 安炳琪(1996-),女,甘肃白银人,硕士研究生,主要从事InSAR技术理论与应用。E?mail:1600602267@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
安炳琪
罗海滨
丁海勇
张志山
王伟
史潇
柯福阳
王明明

引用本文:

安炳琪,罗海滨,丁海勇,张志山,王伟,史潇,柯福阳,王明明. 基于SBAS-InSAR技术的西宁地表形变监测[J]. 遥感技术与应用, 2021, 36(4): 838-846.

Bingqi An,Haibing Luo,Haiyong Ding,Zhishan Zhang,Wei Wang,Xiao Shi,Fuyang Ke,Mingming Wang. Monitoring of Surface Deformation in Xining based on SBAS-InSAR. Remote Sensing Technology and Application, 2021, 36(4): 838-846.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.4.0838        http://www.rsta.ac.cn/CN/Y2021/V36/I4/838

图1  研究区域
图2  影像覆盖范围及GPS点分布
编号轨道号

成像时间

(年-月-日)

垂直

基线/m

时间

基线/d

编号轨道号

成像时间

(年-月-日)

垂直

基线/m

时间

基线/d

1200552018-01-070015226802018-07-06-77180
2202302018-01-19861216228552018-07-18-30192
3204052018-01-31432417230302018-07-30-54204
4205802018-02-12723618232052018-08-1133216
5207552018-02-24-454819233802018-08-23-25228
6209302018-03-08-1006020235552018-09-0437240
7211052018-03-20-627221237302018-09-16-2252
8212802018-04-01208422239052018-09-288264
9214552018-04-13259623240802018-10-1059276
10218052018-05-07-1912024242552018-10-2237288
11219802018-05-19-2413225244302018-11-0333300
12221552018-05-31-4414426246052018-11-1512312
13223302018-06-12-6615627247802018-11-27-8324
14225052018-06-2435168-----
表1  27景Sentinel-1A卫星观测数据信息表
图3  时空基线分布图
图4  2018年1月7日至11月27日西宁市地表平均形变速率图
图5  2018年1月7日至11月27日监测点LOS向位移变化曲线
点号

最大绝对

误差

最小绝对

误差

平均绝对

误差

均方根

误差

D14.070.021.632.03
D23.240.031.051.44
D34.330.622.072.38
D41.610.141.231.52
D53.450.211.141.46
D65.740.441.932.54
D75.050.232.252.63
D880.20.9326.239.01
表2  SBAS-InSAR监测结果精度统计
图6  主要形变区(Ⅰ、Ⅱ、Ⅲ、Ⅳ)与光学影像叠加结果
图7  主要形变区V与光学影像叠加结果
1 Sun Yi.The development characteristics and stability analysis of xining loess landslide——taking the Xiaoyoushan landslide as example[D].Xi’an:Chang’an University,2013.
1 孙毅.西宁市黄土滑坡发育特征及稳定性分析——以小酉山滑坡为例[D].西安:长安大学,2013.
2 Wei Gang,Yin Zhiqiang,Shi Liqun,et al.The development charact-eristics and stability analysis of Lin Jiara landslides in Beishan region,Xining[J].Geology and Resources,2015,24(2):146-151.
2 魏刚,殷志强,史立群,等.西宁市北山地区林家崖滑坡发育特征及稳定性分析[J].地质与资源,2015,24(2):146-151.
3 Xin Peng,Wang Tao,Wu Shuren.A study of the formation mech-anism of caizigou large-scale translational gliding landslide in neogene mudstone basin of Xining-Minhe,Qinghai Province[J].Journal of Earth,2018,39(3):342-350.
3 辛鹏,王涛,吴树仁.青海西宁—民和新近纪泥岩盆地菜子沟大型平推式滑坡形成机制研究[J].地球学报,2018,39(3):342-350.
4 Wang Aiguo.Data fusing method of land subsidence monitoring based on leveling and InSAR[J].Science of Surveying and Map-ping,2015,40(4):121-125.
4 王爱国.运用水准和InSAR的地面沉降监测数据融合方法[J].测绘科学,2015,40(4):121-125.
5 Zhang Xinqing,Xie Rongan,Dai Wujiao,et al.Research and realiz-ation of high spatiotemporal resolution ground subsidence monitoring system[J].Bulletin of Surveying and Mapping,2015(7):68-71.
5 张杏清,谢荣安,戴吾蛟,等.高时空分辨率地面沉降监测体系研究与实现[J].测绘通报,2015(7):68-71.
6 Zhu Jianjun,Li Zhiwei,Hu Jun.Research progress and methods of in SAR for deformation monitoring[J]. Acta Geodaeti-ca et Carto-graphica Sinica,2017,46(10):1717-1733.
6 朱建军,李志伟,胡俊.InSAR变形监测方法与研究进展[J].测绘学报,2017,46(10):519-535.
7 Colesanti C,Ferretti A,Prati C,et al.Monitoring landslides and tectonic motions with the permanent scatterers technique[J].Engineering Geology,2003,68(1):3-14.DOI:10.1016/S0013-7952(02)00195-3.
doi: 10.1016/S0013-7952(02)00195-3
8 Berardino P,Fornaro G,Lanari R,et al.A new algorithm for surfa-ce deformation monitoring based on small baseline differential SAR interferograms[J].IEEE Transactions on Geoscience & Remote Sensing,2003,40(11):2375-2383.DOI:10.1109/TGRS.2002.803792.
doi: 10.1109/TGRS.2002.803792
9 Xu W B,Li Z W,Ding X L,et al.Application of small baseline subsets D-InSAR technology to estimate the time series land deformation and aquifer storage coefficients of los Angeles Area[J].Chinese Journal of Geophysics-Chinese Edition2012,55(2):452-461.DOI:10.6038/j.issn.0001-5733.2012.02.009.
doi: 10.6038/j.issn.0001-5733.2012.02.009
10 Nikolaos L, Prashanth R M, Kosmas P,et al.Ground subsidence monitoring with SAR interferometry techniques in the rural area of Al Wagan,UAE[J].Remote Sensing of Environment,2018,216:276-288.DOI:10.1016/j.rse.2018.07.001.
doi: 10.1016/j.rse.2018.07.001
11 Ge Daqing,Dai Keren,Guo Zhaocheng,et al.Early identification of serious geological hazards with integrated remote sensing technologies: thoughts and recommendations[J].Geomatics and Information Science of Wuhan University,2019,44(7):949-956.
11 葛大庆,戴可人,郭兆成,等.重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J].武汉大学学报(信息科学版),2019,44(7):949-956.
12 Shi Gulin,Xu Lang,Zhang Xuanyu,et al.Monitoring time series deformation of Xi Shancun landslide with SBAS-InSAR[J].Science of Surveying and Mapping,2021,46(2):93-98,105.
12 石固林,徐浪,张璇钰,等.西山村滑坡时序形变的SBAS-InSAR监测[J].测绘科学,2021,46(2):93-98,105.
13 Liu P,Li Z H,Hoey T,et al. Using advanced in SAR time series techniques to monitor landslide movements in ba dong of the Three Gorges region,China[J].International Journal of Applied Earth Observations and Geoinformation,2013,21:253-264.DOI:10.1016/j.jag.2011.10.010.
doi: 10.1016/j.jag.2011.10.010
14 Zhao C Y,Kang Y,Zhang Q,et al.Landslide identification and monitoring along the Jinsha river catchment (Wudongde reservoir area),China,using the InSAR method[J].Remote Sensing,2018,10(7):993.DOI:10.3390/rs10070993.
doi: 10.3390/rs10070993
15 Zhao F M,Meng X M,Zhang Y,et al. Landslide suseptibility mapping of Karakorum highway combined with the application of SBAS-InSAR technology[J].Sensors,2019(12):2685.DOI:10.3390/s19122685.
doi: 10.3390/s19122685
16 Dai Keren,Zhuo Guanchen,Xuqiang,et al.Tracing the pre-failure two-dimensional surface displacements of Nanyu landslide,Gansu province with Radar interferometry[J].Geomatics and Information Science of Wuhan University,2019,44(12):1778-1786,1796.
16 戴可人,卓冠晨,许强,等.雷达干涉测量对甘肃南峪乡滑坡灾前二维形变追溯[J].武汉大学学报(信息科学版),2019,44(12):1778-1786,1796.
17 Zhao Baoqiang,Han Shoufu,Bai Yanping,et al.Application of time-series InSAR technique in large scale landslide monitoring[J].Technology Innovation and Application,2019(1):21-24.
17 赵宝强,韩守富,白艳萍,等.时序InSAR技术在大型滑坡监测中的应用[J].科技创新与应用,2019(1):21-24.
18 Zhang Yanmei,Wang Ping,Luo Xiang,et al.Monitoring Xi'an land subsidence using Sentinel-1 images and SBAS-InSAR technology[J].Bulletin of Surveying and Mapping,2017(4):93-97.
18 张艳梅,王萍,罗想,等.用Sentinel-1数据和SBAS-InSAR技术监测西安地表沉降[J].测绘通报,2017(4):93-97.
19 Xiufeng Hen ,He Min.InSAR technology of earth observation data progressing and comprehensive measurement[M].Beijing:Science Press,2012:180-183.
19 何秀凤,何敏.InSAR对地观测数据处理方法与综合测量[M].北京:科学出版社,2012:180-183.
20 Wu limei,Jin Lihua,Ji Wandong.Monitoring ground subsidence in southwestern Shandong based on SBAS technology[J].Bulletin of Surveying and Mapping,2019(1):108-113.
20 武丽梅,金丽华,季碗栎.结合SBAS技术的鲁西南地区地面沉降监测[J].测绘通报,2019(1):108-113.
21 Yang Zhen,Xu Jia.Monitoring the land subsidence in Hexi area of Nanjing by using Sentinel-1A[J]. Bulletin of Surveying and Mapping,2020(1):61-65,75.
21 杨振,徐佳.利用Sentinel-1A数据监测南京河西地区地面沉降[J].测绘通报,2020(1):61-65,75.
22 Lan Qinlong,Zou Jingui.Application of SBAS technology in ground settlement monitoring——taking Wuhan city as an example[J].Bulletin of Surveying and Mapping,2018(S1):278-282.
22 蓝秦隆,邹进贵.SBAS技术在地面沉降监测中的应用——以武汉市为例[J].测绘通报,2018():278-282.
23 Fu Yan,Wang Jianhui,Yang Bing.Monitoring the surface subsidence in the urban region with SBAS-InSAR technique[J].Geomatics World,2019,26(2):110-115.
23 符彦,王剑辉,杨斌.基于升降轨SBAS-InSAR技术的城市地区地表沉降监测[J].地理信息世界,2019,26(2):110-115.
24 Jiang Chen,Huo Aidi,Zhu Xinghua,et al.Research status of loess hydraulic Erosion-Landslide-Mudflow Chain[J].Journal of Natural Disasters,2019,28(1):38-43.
24 姜程,霍艾迪,朱兴华,等.黄土水力侵蚀—滑坡—泥流灾害链的研究现状[J].自然灾害学报,2019,28(1):38-43.
25 Luo H B,Li Z H,Chen J J,et al. Integration of range split spectrum interferometry and conventional InSAR to monitor large gradient surface displacements[J].International Journal of Applied Earth Observations and Geoinformation,2019,74:130-137.DOI:/10.1016/j.jag.2018. 09.004.
doi: /10.1016/j.jag.2018. 09.004
26 Chang Liang,Guo Lixin,Feng Guiping. Calibration of MODIS water vapor product at infrared band and its application to InSAR atmospheric correction[J].Journal of Geodesy and Geodynamics,2016,36(1):47-51.
26 常亮,郭立新,冯贵平.MODIS红外水汽校正及其在InSAR大气改正中的应用[J].大地测量与地球动力学,2016,36(1):47-51.
27 Li Z W,Cao Y M,Wei J C,et al. Time-series InSAR ground deformation monitoring: atmospheric delay modeling and estimating[J].Earth-Science Reviews,2019,192:258-284.DOI:10.1016/j.earscirev.2019.03.008.
doi: 10.1016/j.earscirev.2019.03.008
28 Wang Z W,Yu S W,Tao Q X, et al. A method of monitoring three-dimensional ground displacement in mining areas by integrating multiple InSAR methods[J].International Journal of Remote Sensing.2018,39(4):1199-1219.DOI:10.1080/01431161.2017.1399473.
doi: 10.1080/01431161.2017.1399473
29 Ao Meng,Zhang Lu,Liao Mingsheng,et al. Deformation monitoringwith adaptive integration of multi-source InSAR data based on variance component estimation[J]. Chinese Journ-al of Geophysics,2020,63(8):2901-2911.
29 敖萌,张路,廖明生,等.基于方差分量估计的多源InSAR数据自适应融合形变测量[J].地球物理学报,2020,63(8):2901-2911.
30 Ma Yange.Establishment of three-dimensional surface deformation field by GPS-InSAR data fusion[D].Xi’an:Chang’ an Univers-ity,2019.马艳鸽.基于GPS-InSAR数据融合的地表三维形变场获取方法研究[D].西安:长安大学,2019.
31 Hu J,Li Z W,Sun Q,al et, Three-dimensional surface displ-acements from InSAR and GPS measurements with variance component estimation[J].IEEE Geoscience and Remote Sensing Letters,2012,9(4):754-758.DOI:10.1109/LGRS. 2011.2181154.
doi: 10.1109/LGRS. 2011.2181154
32 Cao Haikun,Zhao Lihua,Zhang Qin,et al.Ascending and descending orbits InSAR-GPS data fusion method with additional systematic parameters for Three-dimensional deformation field[J].Geo-matics and Information Science of Wuhan University,2018,43(9):1362-1368.
32 曹海坤,赵丽华,张勤,等.利用附加系统误差参数的升降轨InSAR-GPS数据融合方法建立三维形变场[J].武汉大学学报信息科学版,2018,43(9):1362-1368.
33 Samsonov S.Three-dimensional deformation time series of glacier motion from multiple-aperture DInSAR observation[J].Journal of Geodesy,2019,93:2651-2660.DOI:10.1007/s00190-019-01325-y.
doi: 10.1007/s00190-019-01325-y
[1] 李毅,任超,张志刚,梁月吉,潘亚龙. 基于多元线性回归的GPS-IR积雪深度反演研究[J]. 遥感技术与应用, 2020, 35(6): 1312-1319.
[2] 魏聪敏,葛伟鹏,邵延秀,吴东霖. 利用Sentinel-1A合成孔径雷达干涉时间序列监测陇东地区地面沉降变形[J]. 遥感技术与应用, 2020, 35(4): 864-872.
[3] 卢旺达,韩春明,岳昔娟,赵迎辉,周格仪. 基于Sentinel-1A数据的天津地区PS-InSAR地面沉降监测与分析[J]. 遥感技术与应用, 2020, 35(2): 416-423.
[4] 李丹, 杨斌, 陈财. 基于Sentinel-1A数据反演九寨沟地震地表形变场[J]. 遥感技术与应用, 2018, 33(6): 1141-1148.
[5] 于博文,田淑芳. “高分一号”卫星数据几何校正研究[J]. 遥感技术与应用, 2017, 32(1): 133-139.
[6] 马海萍,冯建刚,窦喜英,李晓峰,张辉. 2016年门源M6.4地震前区域地壳形变特征[J]. 遥感技术与应用, 2016, 31(6): 1167-1173.
[7] 翟万林,陈春涛,朱建华,闫龙浩. 基于GPS浮标的高度计定标技术研究[J]. 遥感技术与应用, 2016, 31(5): 925-929.
[8] 朱叶飞,朱锦旗,詹雅婷,崔艳梅. 基于小基线InSAR技术监测九台营城矿区2012年地表形变[J]. 遥感技术与应用, 2015, 30(2): 370-375.
[9] 陶利,张红,王超,汤益先. 新型多基线DInSAR地表形变监测技术研究动态[J]. 遥感技术与应用, 2012, 27(6): 805-811.
[10] 罗海滨, 何秀凤. 应用InSAR 与GPS 集成技术监测地表形变探讨[J]. 遥感技术与应用, 2006, 21(6): 493-496.
[11] 龙 勇,向茂生,尤红建,吴一戎. 高精度动态GPS在机载新型SAR上的应用研究与分析[J]. 遥感技术与应用, 2004, 19(6): 450-455.
[12] 郭建文,盖迎春,王雪梅,盖春燕,王 峰. 基于组件技术的张掖电子地图设计实现及关键技术研究[J]. 遥感技术与应用, 2004, 19(5): 374-378.
[13] 徐卫明,舒 嵘. 利用GPS接收机实现多传感器同步工作的两种方法[J]. 遥感技术与应用, 2003, 18(6): 404-406.
[14] 张志锋,宫辉力,赵 微,张铁楼. 基于3S技术的北京野鸭湖湿地资源的动态变化研究[J]. 遥感技术与应用, 2003, 18(5): 291-296.
[15] 高志海,魏怀东,丁 峰. 基于3S技术的荒漠化监测技术系统研究[J]. 遥感技术与应用, 2002, 17(6): 330-336.