遥感技术与应用 2021, Vol. 36 Issue (5): 983-996 DOI: 10.11873/j.issn.1004-0323.2021.5.0983 |
土壤水分专栏 |
|
|
|
|
青藏高原L波段微波辐射观测与土壤水分反演研究进展 |
杨奥莉1,2( ),郑东海2( ),文军1,陆宣承1,杨越1,符晴2,3 |
1.成都信息工程大学大气科学学院,高原大气与环境四川省重点实验室,四川 成都 610000 2.中国科学院青藏高原研究所,青藏高原地球系统科学国家重点实验室国家青藏高原 科学数据中心,北京 100101 3.兰州大学大气科学学院,甘肃 兰州 730000 |
|
Progress on L-band Microwave Radiometry Observation and Soil Moisture Retrieval over the Tibetan Plateau |
Aoli Yang1,2( ),Donghai Zheng2( ),Jun Wen1,Xuancheng Lu1,Yue Yang1,Qing Fu2,3 |
1.School of Atmospheric Sciences,Chengdu University of Information Technology,Plateau Atmosphere and Environment Key Laboratory of Sichuan province,Chengdu 610000,China 2.National Tibetan Plateau Data Center,State Key Laboratory of Tibetan Plateau Earth System Science,Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China 3.College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,China |
引用本文:
杨奥莉,郑东海,文军,陆宣承,杨越,符晴. 青藏高原L波段微波辐射观测与土壤水分反演研究进展[J]. 遥感技术与应用, 2021, 36(5): 983-996.
Aoli Yang,Donghai Zheng,Jun Wen,Xuancheng Lu,Yue Yang,Qing Fu. Progress on L-band Microwave Radiometry Observation and Soil Moisture Retrieval over the Tibetan Plateau. Remote Sensing Technology and Application, 2021, 36(5): 983-996.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.5.0983
或
http://www.rsta.ac.cn/CN/Y2021/V36/I5/983
|
1 |
Koster R D, Dirmeyer P A, Guo Z, et al. Regions of strong coupling between soil moisture and precipitation[J]. Science, 2004,305(5687):1138-1140. DOI:10.1126/science.1100217.
doi: 10.1126/science.1100217
|
2 |
Brocca L, Tarpanelli A, Filippucci P, et al. How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73:752–766. DOI:10.1016/j.jag.2018.08.023.
doi: 10.1016/j.jag.2018.08.023
|
3 |
Wu G, Duan A, Liu Y, et al. Tibetan plateau climate dynamics: recent research progress and outlook[J]. National Science Review:English version, 2015, 000(001):100-116. DOI:10.1093/nsr/nwu045.
doi: 10.1093/nsr/nwu045
|
4 |
Zheng D, Rogier V D V, Su Z, et al. Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan Rivers[J]. Journal of Hydrology,2018,563:382-394. DOI:10.1016/j.jhydrol.2018.06.024.
doi: 10.1016/j.jhydrol.2018.06.024
|
5 |
Zheng D, Rogier V D V, Su Z, et al. Evaluation of Noah frozen soil parameterization for application to a Tibetan Meadow ecosystem[J]. Journal of Hydrometeorology, 2017, 18(6):1749-1763. DOI:10.1175/JHM-D-16-0199.1.
doi: 10.1175/JHM-D-16-0199.1
|
6 |
Su Z, Wen J,Dente L,et al. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature(Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products[J]. Hydrology and Earth System Sciences,2011,15(7):2303-2316. DOI:10.5194/hess-15-2303-2011.
doi: 10.5194/hess-15-2303-2011
|
7 |
Yang K, Qin J, Zhao L, et al. A multiscale soil moisture and freeze-thaw monitoring network on the third pole[J]. Bulletin of the American Meteorological Society, 2013, 94(12):1907-1916. DOI:10.1175/BAMS-D-12-00203.1.
doi: 10.1175/BAMS-D-12-00203.1
|
8 |
Babaeian E, Sadeghi M, Jones S B, et al. Ground, proximal and satellite remote sensing of soil moisture[J]. Reviews of Geophysics,2019,57(2):530-616. DOI:10.1029/2018RG 000618.
doi: 10.1029/2018RG 000618
|
9 |
Wigneron J P, Jackson T J, O”Neill P, et al. Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[J]. Remote Sensing of Environment,2017,192:238-262. DOI:10.1016/j.rse.2017.01.024.
doi: 10.1016/j.rse.2017.01.024
|
10 |
Kerr Y H, Waldteufel P, Wigneron J P, et al. Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 39(8):1729-1735. DOI:10.1109/36.942551.
doi: 10.1109/36.942551
|
11 |
Lagerloef G, Colomb F R, Le Vine D, et al.The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge[J]. Oceanography, 2008, 21(1):68-81. DOI:10.5670/oceanog.2008.68.
doi: 10.5670/oceanog.2008.68
|
12 |
Entekhabi D, Njoku E G, O"Neill P E, et al. The Soil Moisture Active Passive (SMAP) mission[J]. Proceedings of the IEEE,2010,98(5):704-716. DOI:10.1109/JPROC.2010. 2043918.
doi: 10.1109/JPROC.2010. 2043918
|
13 |
Shi J, Dong X, Zhao T, et al. WCOM: The science scenario and objectives of a global water cycle observation mission[J]. IEEE International Geoscience and Remote Sensing Symposium,2014:3646-3649. DOI:10.1109/IGARSS.2014.6947273.
doi: 10.1109/IGARSS.2014.6947273
|
14 |
Schwank M, Wigneron J, Lopea-Baeza E, et al. L-band radiative properties of vine vegetation at the MELBEX III SMOS Cal/Val Site[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5):1587-1601. DOI:10.1109/TGRS.2012.2184126.
doi: 10.1109/TGRS.2012.2184126
|
15 |
Montzka C, Bogena H R, Weihermueller L, et al. Brightness temperature and soil moisture validation at different scales during the SMOS validation campaign in the rur and erft catchments, Germany[J]. IEEE Transaction on Geoscience and Remote Sensing, 2013, 51(3):1728–1743. DOI:10.1109/TGRS.2012.2206031.
doi: 10.1109/TGRS.2012.2206031
|
16 |
Panciera R, Walker J P, Jackson T J, et al. The Soil Moisture Active Passive Experiments (SMAPEx): Toward soil moisture retrieval from the SMAP mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):490-507. DOI:10.1109/TGRS.2013.2241774.
doi: 10.1109/TGRS.2013.2241774
|
17 |
Colliander A, Cosh M H, Misra S, et al. Validation and scaling of soil moisture in a semi-arid environment: SMAP validation experiment 2015 (SMAPVEX15)[J]. Remote Sensing of Environment,2017,196:101-112. DOI:10.1016/j.rse.2017. 04.022.
doi: 10.1016/j.rse.2017. 04.022
|
18 |
Li Xin, Liu Shaoming, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(5):481-498.
|
18 |
李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5):481-498.:10.1007/s11783-011-0280-z.
|
19 |
Zhao T, Shi J, Lv L, et al. Soil moisture experiment in the Luan River supporting new satellite mission opportunities[J]. Remote Sensing of Environment, 2020, 240:111680. DOI:10.1016/j.rse.2020.111680.
doi: 10.1016/j.rse.2020.111680
|
20 |
Colliander A, Jackson T J, Bindlish R, et al. Validation of SMAP surface soil moisture products with core validation sites[J]. Remote Sensing of Environment, 2017, 191:215-231. DOI:10.1016/j.rse.2017.01.021.
doi: 10.1016/j.rse.2017.01.021
|
21 |
Zhao T, Shi J, Bindlish R, et al. Refinement of SMOS multiangular brightness temperature toward soil moisture retrieval and its analysis over reference targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2015,8(2):589-603. DOI:10.1109/IGARSS.2013. 6721089.
doi: 10.1109/IGARSS.2013. 6721089
|
22 |
Zheng D, Wang X, Rogier V D V, et al. L-band microwave emission of soil freezesc-thaw process in the third pole environment[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(9):5324-5338. DOI:10.1109/TGRS.2017. 2705248.
doi: 10.1109/TGRS.2017. 2705248
|
23 |
Zheng D, Li X, Wang X, et al. Sampling depth of L-band radiometer measurements of soil moisture and freeze-thaw dynamics on the Tibetan Plateau[J]. Remote Sensing of Environment, 2019, 226:16-25. DOI:10.1016/j.rse.2019.03.029.
doi: 10.1016/j.rse.2019.03.029
|
24 |
Dente L, Su Z, Wen J. Validation of SMOS soil moisture products over the Maqu and Twente Regions[J]. Sensors, 2012, 12(12):9965-9986. DOI:10.3390/s120809965.
doi: 10.3390/s120809965
|
25 |
Chen Y, Yang K, Qin J, et al. Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau[J]. Journal of Geophysical Research Atmospheres, 2017, 122(11):5780-5792. DOI:10.1002/2016JD026388.
doi: 10.1002/2016JD026388
|
26 |
Zheng D, Wang X, Rogier V D V, et al. Impact of surface roughness, vegetation opacity and soil permittivity on L-band microwave emission and soil moisture retrieval in the third pole environment[J]. Remote Sensing of Environment,2018, 209(March):633-647. DOI:10.1016/j.rse.2018.03.011.
doi: 10.1016/j.rse.2018.03.011
|
27 |
Li X, Cheng G, Liu S, et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of the American Meteorological Society, 2013, 94(8):1145-1160. DOI:10.1175/BAMS-D-12-00154.1.
doi: 10.1175/BAMS-D-12-00154.1
|
28 |
Li X, Liu S, Xiao Q, et al. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system[J]. Scientific Data, 2017, 4:170083. DOI:10.1038/sdata.2017.83.
doi: 10.1038/sdata.2017.83
|
29 |
Zheng D, Wang X, Rogier V D V, et al. Assessment of soil moisture SMAP retrievals and ELBARA-III measurements in a Tibetan meadow ecosystem[J]. IEEE Geoscience and Remote Sensing Letter, 2019, 16(9):1407-1411. DOI:10.1109/LGRS.2019.2897786.
doi: 10.1109/LGRS.2019.2897786
|
30 |
Kerr Y H, Waldteufel P, Richaume P, et al. The SMOS soil moisture retrieval algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5):1384-1403. DOI:10.1109/TGRS.2012.2184548.
doi: 10.1109/TGRS.2012.2184548
|
31 |
Bindlish R, Jackson T, Cosh M, et al. Global soil moisture from the Aquarius/SAC-D satellite: description and initial assessment[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5):923-927. DOI:10.1109/LGRS.2014.2364151.
doi: 10.1109/LGRS.2014.2364151
|
32 |
O'Neill P, Chan S, Njoku E, et al. Algorithm Theoretical Basis Document (ATBD): level2&3 soil moisture(Passive) data products[EB/OL]. 2015,
|
32 |
Initial Release v.3,October1,Available at .
|
33 |
Mo T, Choudhury B J, Schmugge T J, et al. A model for microwave emission from vegetation-covered fields[J]. Journal of Geophysical Research: Oceans, 1982, 87:11229-11237. DOI:10.1029/JC087iC13p11229.
doi: 10.1029/JC087iC13p11229
|
34 |
Jackson T J, Schmugge T. Vegetation effects on the microwave emission of soils[J]. Remote Sensing of Environment, 1991, 36:203-212. DOI:10.1016/0034-4257(91)90057-D.
doi: 10.1016/0034-4257(91)90057-D
|
35 |
Wang J R, Choudhury B J. Remote sensing of soil moisture content, over bare field at 1.4 GHz frequency[J]. Journal of Geophysical Research: Oceans, 1981, 86(C6):5277-5282. DOI:10.1029/JC086iC06p05277.
doi: 10.1029/JC086iC06p05277
|
36 |
Wigneron J P, Laguerre L, Kerr Y H. A simple parameterization of the L-band microwave emission from rough agricultural soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8):1697–1707. DOI:10.1109/36.942548.
doi: 10.1109/36.942548
|
37 |
Dobson M C, Ulaby F T, Hallikainen M, et al. Microwave dielectric behavior of wet soil-part II: dielectric-mixing models[J]. IEEE Transactions and Geoscience and Remote Sensing, 1985, 23(1):35-46. DOI:10.1109/TGRS.1985.289498.
doi: 10.1109/TGRS.1985.289498
|
38 |
Wang J R, Schmugge T. An empirical model for the complex dielectric permittivity of soils as a function of water content[J]. IEEE Transactions on Geoscience and Remote Sensing, 1980, 18(4):288-295. DOI:10.1109/TGRS.1980.350304.
doi: 10.1109/TGRS.1980.350304
|
39 |
Mironov V L, Kosolapova L G, Fomin S V. Physically and mineralogically based spectroscopic dielectric model for moist soils[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(7):2059-2070. DOI:10.1109/TGRS.2008. 2011631.
doi: 10.1109/TGRS.2008. 2011631
|
40 |
Choudhury B J, Schmugge T J, Mo T. A parameterization of effective soil temperature for microwave emission[J]. Journal of Geophysical Research: Oceans, 1982, 87(C2):1301-1304. DOI:10.1029/JC087iC02p01301.
doi: 10.1029/JC087iC02p01301
|
41 |
Zheng D, Rogier V D V, Wen J, et al. Assessment of the SMAP soil emission model and soil moisture retrieval algorithms for a Tibetan desert ecosystem[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7):3786-3799. DOI:10.1109/TGRS.2018.2811318.
doi: 10.1109/TGRS.2018.2811318
|
42 |
Wigneron J P, Chanzy A, Kerr Y H, et al. Evaluating an improved parameterization of the soil emission in L-MEB[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(4):1177-1189. DOI:10.1109/TGRS.2010. 2075935.
doi: 10.1109/TGRS.2010. 2075935
|
43 |
Zheng D, Li X, Zhao T, et al. Impact of soil permittivity and temperature profile on L-band microwave emission of frozen soil[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,59(5):4080-4093. DOI:10.1109/TGRS.2020. 3024971.
doi: 10.1109/TGRS.2020. 3024971
|
44 |
Wang Q, Rogier V D V, Su Z. Use of a discrete electromagnetic model for simulating aquarius L-band Active/Passive observations and soil moisture retrieval[J]. Remote Sensing of Environment,2017,205:434-452. DOI:10.1016/j.rse.2017. 10.044.
doi: 10.1016/j.rse.2017. 10.044
|
45 |
Bai X, Zeng J, Chen K, et al. Parameter optimization of a discrete scattering model by integration of global sensitivity analysis using SMAP active and passive observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2):1084-1099. DOI:10.1109/TGRS.2018.2864689.
doi: 10.1109/TGRS.2018.2864689
|
46 |
Schwank M, Stahli M, Wydler H, et al. Microwave L-band emission of freezing soil[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(6):1252-1261. DOI:10.1109/TGRS.2004.825592.
doi: 10.1109/TGRS.2004.825592
|
47 |
Kang Jian, Jin Rui, Li Xin, et al. HiWATER:Waternet observation dataset in the upper reaches of the Heihe River Basin in 2014[DB/OL]. Heihe Plan Science Data Center, 2015.亢健, 晋锐,李新, 等. 黑河生态水文遥感试验:黑河流域上游生态水文无线传感器网络WATERNET 2014年观测数据集[DB/OL]. 黑河计划数据管理中心, 2015.
|
48 |
Dente L, Vekerdy Z, Wen J, et al. Maqu network for validation of satellite-derived soil moisture products[J]. International Journal of Applied Earth Observation & Geoinformation, 2012, 17:55-65. DOI:10.1016/j.jag.2011.11.004.
doi: 10.1016/j.jag.2011.11.004
|
49 |
Zhao L, Yang K, Qin J, et al. The scale-dependence of SMOS soil moisture accuracy and its improvement through land data assimilation in the central tibetan plateau[J]. Remote Sensing of Environment, 2014, 152:345-355. DOI:10.1016/j.rse.2014.07.005.
doi: 10.1016/j.rse.2014.07.005
|
50 |
Zeng J, Li Z, Chen Q, et al. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations[J]. Remote Sensing of Environment, 2015, 163:91-110. DOI:10.1016/j.rse.2015.03.008.
doi: 10.1016/j.rse.2015.03.008
|
51 |
Liu J, Chai L, Lu Z, et al. Evaluation of SMAP, SMOS-IC, FY3B, JAXA, and LPRM soil moisture products over the Qinghai-Tibet Plateau and its surrounding areas[J]. Remote Sensing, 2019, 11(7). DOI:10.3390/rs11070792.
doi: 10.3390/rs11070792
|
52 |
Liu J, Chai L, Dong J, et al. Uncertainty analysis of eleven multisource soil moisture products in the third pole environment based on the three-corned hat method[J]. Remote Sensing of Environment, 2021, 255(1):112225. DOI:10.1016/j.rse.2020.112225.
doi: 10.1016/j.rse.2020.112225
|
53 |
Li D, Zhao T, Shi J, et al. First evaluation of aquarius soil moisture products using in situ observations and GLDAS model simulations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(12):5511-5525. DOI:10.1109/JSTARS.2015.2452955.
doi: 10.1109/JSTARS.2015.2452955
|
54 |
Li C, Lu H, Yang K, et al. The evaluation of SMAP enhanced soil moisture products using high-resolution model simulations and in-situ observations on the Tibetan Plateau[J]. Remote Sensing, 2018, 10(4):1-16. DOI:10.3390/rs10040535.
doi: 10.3390/rs10040535
|
55 |
Ma C, Li X, Wei L, et al. Multi-scale validation of SMAP soil moisture products over cold and arid regions in north-western China using distributed ground observation data[J]. Remote Sensing,2017,9(4):327. DOI:10.3390/rs904 0327.
doi: 10.3390/rs904 0327
|
56 |
Owe M, Jeu R D, Walker J P. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8):1643-1654. DOI:10.1109/36.942542.
doi: 10.1109/36.942542
|
57 |
Chen Jiali, Zheng Donghai, Pang Guojin, et al. Retrieval of soil unfrozen water in Maqu region of Tibetan Plateau based on SMAP brightness temperature measurement[J]. Remote Sensing Technology and Application,2020,35(1):48-57.
|
57 |
陈家利, 郑东海, 庞国锦, 等. 基于SMAP 亮温数据反演青藏高原玛曲区域土壤未冻水[J]. 遥感技术与应用, 2020, 35(1):48-57.
|
58 |
Wang Q, Rogier V D V, Ferrazzoli P, et al. Mapping soil moisture across the Tibetan Plateau plains using Aquarius active and passive L-band microwave observations[J]. International Journal Applied Earth Observation Geoinformation, 2019, 77:108-118. DOI:10.1016/j.jag.2019.01.005.
doi: 10.1016/j.jag.2019.01.005
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|