Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (6): 1223-1235    DOI: 10.11873/j.issn.1004-0323.2021.6.1223
冰雪遥感专栏     
基于Landsat-8 OLI的青藏高原IMS 4 km雪冰产品精度评价
除多1,2(),郑照军3,4(),拉巴卓玛1,2,次丹玉珍1,2
1.西藏高原大气环境科学研究所,西藏 拉萨 850000
2.西藏高原大气环境研究重点实验室,西藏 拉萨 850000
3.国家卫星气象中心,北京 100081
4.中国气象局中国遥感卫星辐射测量和定标重点开放实验室,北京 100081
Accuracy Assessment of IMS 4 km Snow and Ice Products on the Tibetan Plateau based on Landsat⁃8 OLI Images
Duo Chu1,2(),Zhaojun Zheng3,4(),Zhuoma Laba1,2,Yuzhen Cidan1,2
1.Tibet Institute of Plateau Atmospheric and Environmental Sciences,Lhasa 850000,China
2.Tibet Key Laboratory of Plateau Atmosphere and Environment Research,Lhasa 850000,China
3.National Satellite Meteorological Center,Beijing 100081,China
4.Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites,China Meteorological Administration,Beijing 100081,China
 全文: PDF(4493 KB)   HTML
摘要:

IMS雪冰产品是多源数据的融合产品,提供北半球逐日无云的雪冰覆盖范围,在青藏高原积雪遥感监测和研究中具有广阔的应用前景。利用Landsat-8 OLI积雪覆盖数据对IMS 4 km分辨率雪冰产品在青藏高原积雪监测中的精度进行了评估验证。研究结果表明:①IMS 4 km雪冰产品的平均总精度为76.0%,平均制图和无雪分类精度分别是88.3%和84.9%,利用IMS 4 km雪冰产品监测青藏高原积雪具有较好的精度,可以用于青藏高原大尺度积雪覆盖监测;②平均多测率为45.4%,漏测率11.7%,IMS 4 km雪冰产品高估了实际积雪面积,且积雪面积比例越高,IMS的积雪判识能力越强,同时出现误判几率越高,而漏判几率越低;③IMS 4 km积雪监测精度在青藏高原总体上呈现海拔较高地段积雪的制图精度较高,随着海拔的降低,积雪监测的漏测和多测呈增加趋势;④相比地面观测数据的区域代表性不足问题,基于高分辨率遥感数据的地面积雪分布特征更为详细,得到更为准确可靠的验证结果。

关键词: IMS雪冰产品Landsat?8 OLI精度评价青藏高原    
Abstract:

NOAA IMS (Interactive Multisensor Snow and Ice Mapping System) is a blended snow and ice product based on active and passive satellite sensors, ground observation and other auxiliary information, and it is most widely used for large-scale snow cover detection and relevant climate research, providing daily cloud-free snow cover extent in the northern hemisphere and having promising application prospects in snow cover monitoring and research in the Tibetan Plateau(TP).In this study, Landsat-8 OLI images are used to evaluate and validate the accuracy of IMS 4km-resolution snow and ice product in snow cover monitoring on the TP. The results show that (1) average overall accuracy of IMS 4km snow and ice products is 76.0% and average produce’s accuracy is 88.3%, which presents that IMS 4 km snow-ice product has good accuracy in snow cover monitoring and can be used for large-scale snow cover detection on the TP. (2) The average commission rate is 45.4% and omission rate is 11.7%, which shows that IMS 4 km products overestimate the actual snow area, and the higher the proportion of snow-covered area, the lower the probability of omission rate and the higher the probability of commission rate.(3) The mapping accuracy of IMS 4 km snow cover on the TP generally is higher in the high altitudes, and the commission and omission errors of snow cover monitoring increase with the decrease of elevation. (4) Compared with less regional representativeness of ground observation data, the spatial characteristics of snow cover based on high-resolution remote sensing data are much more detailed, and more accurate verification results can be obtained. The study also shows that overall accuracy and produce’s accuracy based on the reference image instead of classified image can better reflect the overall monitoring accuracy of IMS 4km snow-cover product on the TP in comparison with other assessment indicators.

Key words: IMS product    Landsat-8 OLI    Accuracy assessment    Tibetan Plateau
收稿日期: 2020-12-15 出版日期: 2022-01-26
ZTFLH:  TP79  
基金资助: 第二次青藏高原综合科学考察研究项目(2019QZKK010312);科技部科技基础资源调查专项(2017FY100501);国家自然科学基金项目(41561017);西藏自治区科技厅“西藏主要地表特征科学考察及研究”项目
通讯作者: 郑照军     E-mail: chu_d22j@hotmail.com;zhengzj@cma.gov.cn
作者简介: 除多(1969-),男,西藏白朗县人,正研级高工,主要从事卫星遥感应用研究。E?mail:chu_d22j@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
除多
郑照军
拉巴卓玛
次丹玉珍

引用本文:

除多,郑照军,拉巴卓玛,次丹玉珍. 基于Landsat-8 OLI的青藏高原IMS 4 km雪冰产品精度评价[J]. 遥感技术与应用, 2021, 36(6): 1223-1235.

Duo Chu,Zhaojun Zheng,Zhuoma Laba,Yuzhen Cidan. Accuracy Assessment of IMS 4 km Snow and Ice Products on the Tibetan Plateau based on Landsat⁃8 OLI Images. Remote Sensing Technology and Application, 2021, 36(6): 1223-1235.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.6.1223        http://www.rsta.ac.cn/CN/Y2021/V36/I6/1223

图1  研究区域及Landsat-8 OLI影像空间分布(背景为2019年1月1日青藏高原IMS 4 km积雪分布图)
IMS
积雪无积雪像元总数制图精度
积雪aba+ba/( a+b)
无积雪cdc+d
像元总数a+cb+da+b+c+d
用户精度a/(a+c)
表1  误差矩阵

图幅

序号

成像

日期

轨道

列号

轨道

行号

积雪像元所

占比例/%

漏测率

/%

多测率

/%

无雪分类 精度/%

用户

精度/%

制图

精度/%

总体

精度/%

Kappa

系数

平均44.411.745.484.962.388.376.00.394 2
L12014/3/201473672.75.956.673.681.694.180.30.430 9
L 22018/1/31463524.79.343.194.940.990.765.30.338 2
L 32014/3/291463747.115.737.181.866.984.373.00.465 6
L 42013/12/161453614.621.613.895.949.378.485.10.519 2
L 52015/4/101453945.74.47.796.291.395.693.80.876 3
L 62014/1/191433519.45.520.298.452.994.582.70.572 1
L 72014/1/281423730.321.842.285.944.678.264.00.297 0
L 82014/2/201433974.21.275.088.279.198.879.80.310 7
L 92015/1/241414057.27.649.983.171.292.474.30.447 0
L 102013/11/111404017.713.19.797.065.986.989.70.686 3
L 112019/2/131403715.631.130.092.429.768.969.80.252 7
L 122017/1/61403568.43.877.673.272.896.272.90.228 7
L 132017/1/11373416.010.821.697.543.989.280.10.476 9
L 142017/1/11373765.34.173.377.870.895.971.70.266 0
L 152014/12/181383895.12.378.831.896.097.793.90.223 9
L 162017/1/81383919.617.120.395.049.982.980.30.500 8
L 172014/3/161354023.427.816.090.858.072.281.30.517 9
L 182018/4/31363965.710.471.362.467.689.666.70.205 1
L 192015/1/211363869.45.967.770.675.994.175.20.311 2
L 202017/2/41353831.013.534.891.552.786.571.80.439 2
L 212018/1/81333827.046.523.181.746.253.570.60.290 0
L 222017/1/121343783.50.582.187.586.099.586.00.255 5
L 232017/1/191353645.71.682.992.850.098.454.30.144 0
L 242017/1/51333635.03.232.797.561.496.877.60.565 1
L 252018/2/111313845.56.968.384.753.293.159.60.233 8
表2  基于Landsat-8 OLI的IMS 4 km雪冰产品精度评价结果
图2  前10个Landsat 8 band 6-3-2合成图(a)及对应的1 km分辨率Landsat 8(b)和IMS(c)积雪覆盖图(Landsat 8图像接收日期及图幅列行号显示在图像上方)
图3  基于Landsat-8 OLI的青藏高原IMS 4 km总体精度
图4  基于Landsat-8 OLI的青藏高原IMS 4 km产品积雪判识误差
漏测率多测率无雪分类精度用户精度制图精度总体精度Kappa系数积雪面积比例
漏测率1.00
多测率-0.56b1.00
无雪分类精度0.18-0.60b1.00
用户精度-0.60b0.42c-0.55b1.00
制图精度-1.00a0.56b-0.180.60b1.00
总体精度-0.14-0.36-0.090.56b0.141.00
Kappa系数0.02-0.80a0.51b0.11-0.020.63a1.00
积雪面积比例-0.59b0.83a-0.75a0.83a0.59b0.11-0.45c1.00
表3  精度评价指标及积雪面积比例相互之间的线性相关系数矩阵
图5  IMS 4 km雪冰产品精度误差空间分布特征和积雪监测精度误差随高程分布特征
图6  IMS 4 km雪冰产品精度误差空间分布与积雪监测误差随高程分布
1 Ke Changqing, Li Peiji. Spatial and temporal characteristics of snow cover over the Tibetan Plateau[J]. Acta Geographica Sinica, 1998, 53(3): 209-215.
1 柯长青,李培基. 青藏高原积雪分布与变化特征[J]. 地理学报, 1998, 53 (3): 209-215.
2 Blanford H F. On the connexion of the Himalayan snowfall with dry winds and seasons of drought in India[J]. Proceedings of the Royal Society of London, 1884, 37:3-22.
3 Wu G X, Liu Y M, He B, et al. Thermal controls on the Asian summer monsoon[J]. Scientific Reports,2012,2(404): DOI:10.1038/srep00404.
4 Zhu Yuxiang, Ding Yihui, Xu Huaigang. The decadal relationship between atmospheric heat source of winter and spring snow over Tibetan Plateau and rainfall in east China[J]. Acta Meteorologica Sinica, 2007,65 (6): 946–958.
4 朱玉祥, 丁一汇, 徐怀刚.青藏高原大气热源和冬春积雪与中国东部降水的年代际变化关系[J]. 气象学报, 2007, 65 (6): 946-958.
5 Zhu Yuxiang, Ding Yihui. Influences of snow cover over Tibetan Plateau on weather and climate: advances and problems[J]. Meteorological Science and Technology, 2007,35(1): 1-8.
5 朱玉祥, 丁一汇. 青藏高原积雪对气候影响的研究进展和问题[J]. 气象科技, 2007,35(1): 1-8.
6 Yang Xiuchun, Cao Yungang. Xu Bin,et al. Remote sensing monitoring of grassland snow in China: from October2007 to March 2008[J]. Geographical Research, 2008,27(5): 1109-1117.
6 杨秀春, 曹云刚, 徐斌, 等. 中国北方草原区积雪遥感监测: 2007.10~2008.3期间[J], 地理研究,2008,27(5): 1109-1117.
7 Andrew G K, Dorothy K H, George A R. Improving snow-cover mapping in forests through the use of a canopy reflectance model[J]. Hydrological Processes, 1998, 12: 1723-1744.
8 Chang A T C, Foster J L, Owe M, et al. Passive and active microwave studies of wet snow pack properties[J]. Nordic Hydrology, 1985, 16: 57-66.
9 Feng Xuezhi, Li Wenjun, Bo Yancheng. Research on the methods of obtaining satellite snow cover information[J]. Journal of Image and Graphics, 2000,5(10) : 836-839.
9 冯学智, 李文君, 柏延臣. 雪盖卫星遥感信息的提取方法探讨[J].中国图象图形学报, 2000, 5(10) : 836-839.
10 Feng Xuezhi, Lu Anxin, Zeng Zhuqun. Study on snow disaster monitoring and assessment using remote sensing in the main Pastoral areas of China[J]. Journal of Remote Sensing, 1997,1(2): 129-1341.
10 冯学智, 鲁安新, 曾群柱. 中国主要牧区雪灾遥感监测评估模型研究[J].遥感学报,1997,1(2): 129-1341.
11 Liang Tiangang, Liu Xingyuan, Guo Zhenggang. Evaluation approach to snow disasters in pastoral areas based on 3S technologies[J]. Acta Prataculturae Sinica, 2006,15(4): 122-1281.
11 梁天刚, 刘兴元, 郭正刚. 基于3S技术的牧区雪灾评价方法[J].草业学报, 2006, 15(4): 122-128.
12 Liu Xingyuan, Chen Quangong, Liang Tiangang, et al. Establishment of snow disaster remote sensing monitoring and damage estimation systems in Altai pastoral region of Xinjiang[J]. Chinese Journal of Applied Ecology, 2006,17(2): 215-220.
12 刘兴元, 陈全功, 梁天刚, 等. 新疆阿勒泰牧区雪灾遥感监测体系构建与灾害评价系统研究[J]. 应用生态学报, 2006,17(2): 215-220.
13 Hall D K, Riggs G A, Salomonson V V. Theoretical Basic Document (ATBD) for the MODIS Snow and Sea Ice-Mapping Algorithms[R], 2001, NASA.
14 Cao Yungang, Liu Chuang. The development of snow-cover mapping from AVHRR to MODIS[J]. Geography and Geo-Information Science, 2005, 21(5): 15-19.
14 曹云刚, 刘闯. 从AVHRR到MODIS 的雪盖制图研究进展[J]. 地理与地理信息科学, 2005, 21(5): 15-19.
15 Huang Xiaodong, Hao Xiaohua, Yang Yongshun, et al. Advances in snow-cover monitoring using optical remote sensing[J]. Pratacultural Science, 2012, 29(1): 35-43.
15 黄晓东, 郝晓华, 杨永顺,等. 光学积雪遥感研究进展[J]. 草业科学, 2012,29(1): 35-43.
16 Rutger D, Steven M, De J. Monitoring snow cover dynamics in Northern Fennoscandia with SPOT vegetation images[J].International Journal of Remote Sensing, 2004,25(15):2933-2949.
17 Xiao X, Zhang Q, Boles S, et al. Mapping snow cover in the Pan-Arctic zone, using multi-year (1998~2001) images from optical Vegetation sensor[J].International Journal of Remote Sensing, 2004,25(24):5731-5744.
18 Hall D K, Riggs G A, Salomonson V V, et al. MODIS snow-cover products[J]. Remote Sensing of Environment, 2002, 83(1-2):181-194.
19 Che Tao, Li Xin. Retrieval of snow depth in China by passive microwave remote sensing data and its accuracy assessment[J]. Remote Sensing Technology and Application, 2004, 19(5):301-306.车涛,李新.利用被动微波遥感数据反演我国积雪深度及其精度评价[J].遥感技术与应用.2004,19(5):301-306.
20 Che Tao, Li Xin. Spatial distribution and temporal variation of snow water resources in China during1993~2002[J]. Journal of Glaciology and Geocryology, 2005, 27(1):64-67.
20 车涛,李新.1993~2002年中国积雪水资源时空分布与变化特征[J].冰川冻土,2005,27(1):64-67.
21 Feng Qisheng, Zhang Xuetong, Liang Tiangang. Dynamic monitoring of snow cover based on MOD10A1 and AMSR-E in the north of Xinjiang Province, China[J]. Acta Prataculturae Sinica, 2009,18(1):125-133.
21 冯琦胜,张学通,梁天刚.基于MOD10A1和AMSR-E的北疆牧区积雪动态监测研究[J].草业学报,2009,18(1):125-133.
22 Yu Hui, Feng Qisheng, Zhang Xuetong, et al. An approach for monitoring snow depth based on AMSR-E data in the pastoral area of Northern Xinjiang[J]. Acta Prataculturae Sinica, 2009,18(4):210-216.
22 于慧,冯琦胜,张学通,等.基于AMSR-E信息的北疆牧区雪深遥感监测模型方法初探[J].草业学报,2009,18(4):210-216.
23 Liang T G, Zhang X T, Xie H J, et al. Toward improved daily snow cover mapping with advanced combination of MODIS and AMSR-E measurements[J]. Remote Sensing of Environment, 2008, 112:3750-3761.
24 Huang Xiaodong, Li Xubing, Liu Changyu, et al. Remote sensing inversion of snow cover extent and snow depth/snow water equivalent on the Qinghai-Tibet Plateau: advance and challenge[J]. Journal of Glaciology and Geocryology, 2019, 41(5):1138-1149.
24 黄晓东,李旭冰,刘畅宇,等.青藏高原积雪范围和雪深/雪水当量遥感反演研究进展及挑战[J].冰川冻土,2019,41(5):1138-1149.
25 Liu Yujie, Yang Zhongdong. Processing principle and algorithm of MODIS data[M]. Beijing: Science Press, 2001:187-192.
25 刘玉洁,杨忠东. MODIS遥感信息处理原理与算法[M]. 北京:科学出版社, 2001: 187-192.
26 Gao Y, Xie H, Lu N, et al. Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra–Aqua MODIS and Aqua AMSR-E measurements[J]. Journal of Hydrology, 2010, 385: 23-35.
27 Dietz A J, Kuenzer C, Gessner U, et al. Remote sensing of snow–a review of available methods[J]. International Journal of Remote Sensing, 2012, 33: 4094-4134.
28 Frei A, Tedesco M, Lee S, et al. A review of global satellite-derived snow products[J]. Advances in Space Research, 2012, 50(8):1007-1029.
29 Choi G, Robinson D A. Kang S. Changing Northern Hemisphere snow seasons[J]. Journal of Climate, 2010, 23:5305-5310.
30 Liu Xun, Jin Xin, Ke Changqing. Accuracy evaluation of the IMS snow and ice products in stable snow covers regions in China[J]. Journal of Glaciology and Geocryology, 2014,36(3):500-507.
30 刘洵,金鑫,柯长青.中国稳定积雪区IMS雪冰产品精度评价[J]. 冰川冻土,2014,36(3): 500-507.
31 Chen Aijun, Han Chenhui, Zheng Zhaojun, et al. Analysis of IMS ice and snow products over the Qinghai-Tibet Plateau[J]. China Science Paper, 2018, 13(3): 340-344.陈爱军,韩琛惠,郑照军,等.青藏高原IMS冰雪产品精度分析[J]. 中国科技论文, 2018, 13(3), 340-344.
32 Wu T, Han L, Liu Q. A novel algorithm for differentiating cloud from snow sheets using Landsat-8 OLI imagery[J]. Advances in Space Research, 2019, 64(1):79-87.
33 Berman E E, Bolton D K, Coops N C, et al. Daily estimates of Landsat fractional snow cover driven by MODIS and dynamic time-warping[J]. Remote Sensing of Environment, 2018, 216:635-646.
34 Zhu Z, Wang S, Woodcock C E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7,8,and Sentinel-2 images[J]. Remote Sensing of Environment,2015,159:269-277.
35 Guo S, Du P, Xia J, et al. Spatiotemporal changes of glacier and seasonal snow fluctuations over the Namcha Barwa–Gyala Peri massif using object-based classification from Landsat time series[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 177:21-37.
36 Revuelto J, Alonso-González E, Gascoin S, et al. Spatial downscaling of MODIS snow cover observations using Sentinel-2 snow products[J]. Remote Sensing, 2021, 13(22): 4513. DOI.org/10.3390/rs13224513.
37 Yang J, Jiang L, Ménard, C B, et al. Evaluation of snow products over the Tibetan Plateau[J]. Hydrological Processes, 2015, 29(15): 3247-3260.
38 Chen X, Jiang L, Yang J, et al. Validation of ice mapping system snow cover over southern China based on Landsat enhanced thematic mapper plus imagery[J]. Journal of Applied Remote Sensing, 2014, 8(1): 084680. DOI:10.1117/1.JRS.8.084680.
doi: 10.1117/1.JRS.8.084680
39 Chu Duo. Snow Atlas of Tibetan Plateau[M]. Beijing: China Meteorological Press, 2018.
39 除多. 青藏高原积雪图集[M]. 北京:气象出版社,2018.
40 Zhang Yili, Li Bingyuan, Zheng Du. A discussion on the boundary and area of the Tibetan Plateau in China[J]. Geographical Research, 2002,21(1):1-8.
40 张镱锂,李炳元,郑度.论青藏高原范围与面积[J].地理研究,2002,21(1):1-8.
41 Frei A, Lee S Y. A comparison of optical-band based snow extent products during spring over North America[J]. Remote Sensing of Environment, 2010, 114(9):1940-1948.
42 Helfrich S R, Mcnamara D, Ramsay B H, et al. Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS)[J]. Hydrological Processes, 2007, 21(12):1576-1586.
43 Ramsay B H. The interactive multisensor snow and ice mapping system[J]. Hydrological Processes,1998,12:1537-1546.
44 Chang A T C, Foster J L, Hall D K. Effects of forest on the snow parameters derived from microwave measurements during the BOREAS winter field campaign[J]. Hydrological Processes, 1996, 10:1565-1574.
45 Masek J G, Wulder M A, Markham B. Landsat 9: Empowering open science a nd applications through continuity[J]. Remote Sensing of Environment, 2020,248. DOI:10.1016/j.rse.2020.111968.
doi: 10.1016/j.rse.2020.111968
46 Hall D K, Riggs G A, Salomonson V V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data[J]. Remote Sensing of Environment, 1995, 54(2):127-140.
47 Congalton R G, Green K. Assessing the accuracy of remotely sensed data: principles and practices[M]. Boca Raton FL,USA.,2019.
48 Chu Duo, Yang Yong, Jiancan Luobu , et al. The variations of snow cover days over the Tibetan Plateau during 1981~2010[J]. Journal of Glaciology and Geocryology, 2015,37(6):1461-1472.
48 除多,杨勇,罗布坚参,等.1981~2010年青藏高原积雪日数时空变化特征分析[J]. 冰川冻土,2015,37(6):1461-1472.
49 Yu Xiaoqi, Qiu Yubao, Ruan Yongjian, et al. Validation and comparison of binary cloudless snow products in High Asia[J].Remote Sensing Technology and Application, 2017,32(1):37-48.
49 于小淇,邱玉宝,阮永俭,等.高亚洲地区无云积雪遥感二值产品对比和精度验证分析[J].遥感技术与应用,2017,32(1):37-48.
50 Qiu Yubao, Zhang Huan, Chu Duo, et al. Cloud removing algorithm for the daily cloud free MODIS-based snow cover product over the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2017,39(3): 515-526.
50 邱玉宝,张欢,除多,等.基于MODIS 的青藏高原逐日无云积雪产品算法[J].冰川冻土,2017,39(3): 515-526.
51 Brubaker K L, Pinker R T, Deviatova E. Evaluation and comparison of MODIS and IMS snow-cover estimates for the continental United States using station data[J]. Journal of Hydrometeorology, 2005, 6:1002-1017.
52 Chen C, Lakhankar T, Romanov P, et al. Validation of NOAA-Interactive multisensor snow and Ice Mapping System (IMS) by comparison with ground-based measurements over continental United States[J].Remote Sensing, 2012,4(5):1134-1145. DOI:10.3390/rs4051134.
doi: 10.3390/rs4051134
[1] 杨奥莉,郑东海,文军,陆宣承,杨越,符晴. 青藏高原L波段微波辐射观测与土壤水分反演研究进展[J]. 遥感技术与应用, 2021, 36(5): 983-996.
[2] 盛夏,石玉立,丁海勇. 青藏高原GPM降水数据空间降尺度研究[J]. 遥感技术与应用, 2021, 36(3): 571-580.
[3] 徐光志,徐涵秋. Sentinel⁃2A MSI 和Landsat 8 OLI两种传感器多光谱信息的交互对比[J]. 遥感技术与应用, 2021, 36(1): 165-175.
[4] 詹鹏飞,刘凯,张玉超,马荣华,宋春桥. 青藏高原不同气候子区典型湖泊多时间尺度变化的遥感对比研究[J]. 遥感技术与应用, 2021, 36(1): 90-102.
[5] 雷华锦,李弘毅,王建,郝晓华,赵宏宇,张娟. 基于环境信息和回归模型的青藏高原MODIS积雪面积比例产品制备[J]. 遥感技术与应用, 2020, 35(6): 1303-1311.
[6] 王鑫蕊, 晋锐, 林剑, 曾祥飞, 赵泽斌. 有云Landsat TM/OLI影像结合DEM提取青藏高原湖泊边界的自动算法研究[J]. 遥感技术与应用, 2020, 35(4): 882-892.
[7] 焦雪敏,张赫林,徐富宝,王岩,彭代亮,李存军,徐希燕,范海生,黄运新. 青藏高原1982~2015年FPAR时空变化分析[J]. 遥感技术与应用, 2020, 35(4): 950-961.
[8] 董超,赵庚星. 时序数据集构建质量对土地覆盖分类精度的影响研究[J]. 遥感技术与应用, 2020, 35(3): 558-566.
[9] 张永宏,杨晨阳,陶润喆,王剑庚,田伟. 基于FY-4A数据的青藏高原多时相云检测方法[J]. 遥感技术与应用, 2020, 35(2): 389-398.
[10] 陈家利,郑东海,庞国锦,李新. 基于SMAP亮温数据反演青藏高原玛曲区域土壤未冻水[J]. 遥感技术与应用, 2020, 35(1): 48-57.
[11] 张正,肖鹏峰,张学良,冯学智,杨永可,胡瑞,盛光伟,刘豪. 青藏高原融雪期积雪反照率特性分析[J]. 遥感技术与应用, 2019, 34(6): 1146-1154.
[12] 许文鑫, 周玉科, 梁娟珠. 基于变化点的青藏高原植被时空动态变化研究 [J]. 遥感技术与应用, 2019, 34(3): 667-676.
[13] 张博, 吴立宗. 基于Spark的分布式青藏高原MODIS LST插值方法实现研究[J]. 遥感技术与应用, 2018, 33(6): 1178-1185.
[14] 周玉科,刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3): 486-498.
[15] 陈思宇,巩垠熙,梁天刚. 星载激光雷达在青藏高原湖泊变迁中的应用研究[J]. 遥感技术与应用, 2018, 33(2): 351-359.