Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (6): 1311-1320    DOI: 10.11873/j.issn.1004-0323.2021.6.1311
LiDAR专栏     
基于机载LiDAR的高寒山区遥感高程数据精度评估
张欢1,2(),李弘毅1(),李浩杰1,2,车涛1,3
1.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
2.中国科学院大学 资源与环境学院,北京 100049
3.中国科学院黑河遥感站,甘肃 兰州 730000
Accuracy Evaluation of Remote Sensing Elevation Data in Alpine Mountains based on Airborne LiDAR
Huan Zhang1,2(),Hongyi Li1(),Haojie Li1,2,Tao Che1,3
1.Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
3.Chinese Academy of Sciences Heihe Remote Sensing Station,Lanzhou 730000,China
 全文: PDF(3127 KB)   HTML
摘要:

遥感高程数据是获取缺资料地区DEM(Digital elevation models)数据的重要手段。然而,由于高寒山区实地高程测量稀少,难以对多源遥感DEM数据进行统一验证。ICESat-2等新的遥感高程数据在高寒山区也缺乏相应的精度评估。针对此问题,以青藏高原东北缘的冰沟流域作为研究区,采用机载航空遥感获取的大范围LiDAR(Light Detection And Ranging)DEM数据对新产品ICESat-2 ATL06(Ice, Cloud, and Land Elevation Satellite-2, Land Ice Height)、ALOS DEM(12.5 m分辨率)以及新版本SRTM V3(SRTM Arc-Second Global 1 V003)、ASTER GDEM V3(ASTER Global DEM)进行验证,并分析地形因子与均方根误差RMSE的关系。研究结果表明:ICESat-2 ATL06数据在高寒山区的RMSE为0.747 m。由于其较高的精度,可用于验证缺资料地区的其他遥感高程数据。其他遥感高程数据的精度都相对较低,ALOS 12.5 m数据的RMSE为5.284 m;ASTER GDEM V3版本的RMSE为9.903 m。实验所采用的4种遥感高程数据与机载LiDAR DEM均具有较高的相关性,相关系数在0.998与1.000之间。实验还揭示了坡度是影响遥感DEM精度的主要因素。除ICESat-2 ATL06外,其他高程数据的RMSE均随坡度的增大先减小再增大,且都存在一个最佳坡度值。鉴于地形复杂多样的冰沟流域具有青藏高原高寒山区的典型特征,多源遥感DEM数据在该区域的验证结论具有较好的代表性,可为相似地区DEM数据的使用和评估提供重要的知识补充。

关键词: 遥感测高ICESat?2LiDARDEM高寒山区    
Abstract:

Remote sensing is an essential means to obtain DEM data in areas lacking information. However, due to the scarcity of field elevation measurements in alpine mountains, it is difficult to verify multi-source remote sensing DEM data uniformly. New remote sensing elevation data such as ICESAT-2 also lack the corresponding accuracy evaluation in alpine mountainous areas. To solve this problem, we take the Binggou Basin on the northeast margin of the Tibetan plateau as the research area. Applying the wide range of LiDAR DEM data acquired by airborne airborne remote sensing to the new product ICESAT-2 ATL06, ALOS DEM 12.5 m, the new version of SRTM V3 and ASTER GDEM were verified, and the relationship between terrain factor and RMSE was analyzed. The results show that ICESat-2 ATL06 can reach 0.747 m in RMSE in alpine mountains. Because of its high precision, it can be used to verify other remote sensing elevation in the data shortage area. The accuracy of other remote sensing elevation is relatively low. The RMSE of ALOS 12.5 m data is 5.284 m. RMSE of ASTER GDEM V3 version is 9.903 m. The five kinds of remote sensing elevation data used in this study have a high correlation with airborne LiDAR DEM, with the correlation coefficient between 0.997 and 1.000. Our study also reveals that slope is the main factor affecting the accuracy of remote sensing DEM. Except ICESat-2 ATL06, RMSE of other elevation data decreases first and then increases with the increase of slope, and there is an optimal slope value for all of them. In view of the typical characteristics of the alpine mountains on the Tibetan plateau, the verification conclusions of multi-source remote sensing DEM data in this region are representative, which can provide an important knowledge supplement for the application and evaluation of laser remote sensing DEM data in similar areas.

Key words: Remote sensing elevation measurement    ICESat-2    LiDAR    DEM    Alpine region
收稿日期: 2020-10-20 出版日期: 2022-01-26
ZTFLH:  K90  
基金资助: 国家自然基金面上项目(41971399);青海省基础研究项目(2020?ZJ?731);中国科技基础资源调查项目(2017FY100503)
通讯作者: 李弘毅     E-mail: zhanghuan192@mails.ucas.ac.cn;lihongyi@lzb.ac.cn
作者简介: 张欢(1996-),女,贵州遵义人,硕士研究生,主要从事寒区水文遥感研究。E?mail: zhanghuan192@mails.ucas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张欢
李弘毅
李浩杰
车涛

引用本文:

张欢,李弘毅,李浩杰,车涛. 基于机载LiDAR的高寒山区遥感高程数据精度评估[J]. 遥感技术与应用, 2021, 36(6): 1311-1320.

Huan Zhang,Hongyi Li,Haojie Li,Tao Che. Accuracy Evaluation of Remote Sensing Elevation Data in Alpine Mountains based on Airborne LiDAR. Remote Sensing Technology and Application, 2021, 36(6): 1311-1320.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.6.1311        http://www.rsta.ac.cn/CN/Y2021/V36/I6/1311

图1  冰沟流域LiDAR制作的 DEM图 审图号:GS(2016)1569
DEM数据LiDAR DEMICESat-2 ATL06ALOS DEM 12.5 mSRTM V3ASTER GDEM
传感器ALS70ATLASPALSARSRTMASTER
获取时间20142018~20192006~201120002019
空间分辨率/m12012.53030
参考椭球WGS84WGS84WGS84WGS84/EGM96WGS84/EGM96
投影方式UTM投影UTM投影UTM投影UTM投影UTM投影
数据格式Geo TiffHDF5Geo TiffHGTGeo Tiff
覆盖范围冰沟流域90oN~90oS80oN~80oS60oN~56oS83oN~83oS
表1  多种类型DEM数据简介
图2  数据处理流程图
图3  高程配准检查图
图4  散点图与线性回归图、高差分布直方图 (从左至右,从上至下依次为ICESat-2 ATL06、2009与2010年ALOS DEM、SRTM V3、ASTER GDEM)
ICESat-2 ATL06/m2009 ALOS/m2010 ALOS/mSRTM V3/mASTER GDEM/m
Mean-0.0451.3730.8431.1881.626
RMSE0.7475.7545.2847.6249.903
SD0.7465.5885.2167.5319.768
表2  多源DEM精度统计表
图5  5种高程数据均方根误差随坡度的变化(红色框代表最佳坡度值)
1 Farr T G, Rosen P A, Caro E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2): 1-33.
2 Mudd S M. Topographic data from satellites[J]. Developments in Earth Surface Processes, 2020, 23:91-128.
3 NASA JPL. NASA shuttle radar topography mission global 1 arc second[DB/OL]. 2013, Distributed by NASA EOSDIS Land Processes DAAC,DOI:org/10.5067/MEaSUREs/SRTM/SRTMGL1.003. Accessed 2020-02-21.
doi: org/10.5067/MEaSUREs/SRTM/SRTMGL1.003. Accessed 2020-02-21
4 NASA/METI/AIST/JSpacesystems apan, U.S./Japan ASTER Science Team. ASTER Global digital elevation model V003[DB/OL]. DOI:org/10.5067/ASTER/ASTGTM.003, 2019,distributed by NASA EOSDIS Land Processes DAAC, Accessed 2020-07-5.
5 DAAC ASF. ALOS PALSAR_Radiometric_Terrain _Corrected_low_res; Includes Material © JAXA/METI 2007[DB/OL]. Accessed through ASF DAAC 11 November2015, DOI:org/10.5067/JBYK3J6HFSVF.
doi: org/10.5067/JBYK3J6HFSVF
6 Tadono T, Ishida H, Oda F, et al. Precise Global DEM Generation by ALOS PRISM[J]. Remote Sensing and Spatial Information Sciences.2014:2-4. DOI:10.5194/isprsannals-II-4-71-2014.
doi: 10.5194/isprsannals-II-4-71-2014
7 ADIV, BAAS.TanDEM-X DEM:Comparative performan-ce review employing LiDAR data and DSMs[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2020,160:33-50. DOI:org/10.1016/j.isprsjprs.2019.11.015.
doi: org/10.1016/j.isprsjprs.2019.11.015
8 Phan V H, Lindenbergh R, Menenti M. ICESat derived elevation changes of Tibetan lakes between 2003 and 2009[J]. International Journal of Applied Earth Observation & Geoinformation, 2012, 17:12-22.
9 Satge F, Denezine M, Pillco R, et al. Absolute and relative height-pixel accuracy of SRTM-GL1 over the South American Andean Plateau[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 121: 157-166.
10 National A, Space A. ASTER GDEM dataset in Heihe River Basin(2009)[DB/OL].National Tibetan Plateau Data Center,2013.National A, Space A. 黑河流域ASTER GDEM数据集(2009)[DB/OL]. 国家青藏高原科学数据中心, 2013.
11 Guo Xiaoyi, Zhang Hongyan, Zhang Zhengxiang, et al. Comparative analysis of the quality and accuracy between ASTER-GDEM and SRTM3[J]. Remote Sensing Technology and Application , 2011, 26(3):334-339.
11 郭笑怡, 张洪岩, 张正祥,等. ASTER-GDEM与SRTM3数据质量精度对比分析[J]. 遥感技术与应用, 2011, 26(3):334-339.
12 Wu Yuxin, Zhao Mudan, Gao Zhiyuan, et al.Comparison analysis of accuracy of SRTMGL1 and SRTM V4 in Three Typical Regions of China[J]. Research of Soil and Water Conservation, 2019, 26(4):36-42.
12 吴宇鑫, 赵牡丹, 高志远,等. 中国3类典型区SRTMGL1和SRTM V4精度对比分析[J]. 水土保持研究, 2019, 26(4):36-42.
13 Zhang K, Gann D, Ross M, et al. Accuracy assessment of ASTER, SRTM, ALOS, and TDX DEMs for Hispaniola and implications for mapping vulnerability to coastal flooding[J]. Remote Sensing of Environment, 2019, 225:290-306.
14 Zhao Shangmin, Cheng Weiming, Jiang Jingtian, et al. Error comparison among the DEM datasets made from ZY-3 satellite and the global open datasets[J]. Journal of Geo-information Science, 2020,22(3):370-378.
14 赵尚民, 程维明, 蒋经天,等. 资源三号卫星DEM数据与全球开放DEM数据的误差对比[J]. 地球信息科学学报, 2020,22(3):370-378.
15 Claudia, C, Carabajal. ICESat validation of SRTM C-band digital elevation models[J]. Geophysical Research Letters, 2005,32(22):023957. DOI:org/10.1029/2005GL023957.
doi: org/10.1029/2005GL023957
16 Neumann T A, Martino A J, Markus T, et al. The ice, cloud, and Land Elevation Satellite - 2 Mission: a global geolocated photon product derived from the advanced topographic laser altimeter system[J]. Remote Sensing of Environment, 2019:233. DOI:org/10.1016/j.rse.2019.111325.
doi: org/10.1016/j.rse.2019.111325
17 Zhang G, Chen W, Xie H. Tibetan Plateau's lake level and volume changes from NASA's ICESat/ICESat‐2 and Landsat missions[J]. Geophysical Research Letters,2019, 46(22):085032. DOI:org/10.1029/2019GL085032.
doi: org/10.1029/2019GL085032
18 Narine L L, Popescu S, Neuenschwander A, et al. Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data[J]. Remote Sensing of Environment, 2019, 224: 1-11.
19 Wang C, Zhu X, Nie S, et al. Ground elevation accuracy verification of ICESat-2 data: a case study in Alaska, USA[J]. Optics Express, 2019, 27(26): 38168-38179.
20 Xu Chunhai, Li Zhongqin, Wang Feiteng, et al. Estimation of mass balance of Shiyi Glacier in the Heihe River Basin, Qilian mountains during 2000-2012 based on LiDAR and SRTM[J]. Journal of Natural Resources,2017,32(1):88-100.
20 徐春海, 李忠勤, 王飞腾, 等. 基于LiDAR、SRTM DEM的祁连山黑河流域十一冰川2000—2012年物质平衡估算[J]. 自然资源学报,2017,32(1):88-100.
21 Li Hongyi, Wang Jian, Bai Yunjie, et al. The Snow hydrological processes during a representative snow cover period in Binggou Watershed in the upper reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2009,31(2):293-300.
21 李弘毅,王建,白云洁,等. 黑河上游冰沟流域典型积雪期水文情势[J]. 冰川冻土,2009,31(2):293-300.
22 Li Xin, Liu Shaomin, Ma Mingguo, et al. Overall design of the combined remote sensing test for ecological and hydrological processes in Heihe River Basin[J]. Advances in Earth Science,2012,27(5):481-498.
22 李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展,2012,27(5):481-498.
23 Brunt K M, Neumann T A, Smith B E. Assessment of ICESat‐2 Ice sheet surface heights, based on comparisons over the interior of the antarctic ice sheet[J]. Geophysical Research Letters,2019,46(22):13072-13078.
24 Nuth C, Kaab A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change[J]. Cryosphere,2011,5(1):271-290.
25 Wan Jie, Liao JingJuan, Xu Tao, et al. Accuracy evaluation of SRTM data based on ICESat/GLAS altimeter data: a case study in the Tibetan Plateau[J]. Remote Sensing for Land and Resources, 2015, 27(1):100-105.
25 万杰, 廖静娟, 许涛,等. 基于ICESat/GLAS高度计数据的SRTM数据精度评估——以青藏高原地区为例[J]. 国土资源遥感,2015,27(1):100-105.
26 Rabah M, El-Hattab A, Abdallah M. Assessment of the most recent satellite based digital elevation models of Egypt[J]. NRIAG Journal of Astronomy and Geophysics, 2017:S2090997717301190. DOI:org/10.1016/j.nrjag.2017.10.006.
doi: org/10.1016/j.nrjag.2017.10.006
27 Smitha B A, Fricker H, Holschuh N, et al. Land ice height-retrieval algorithm for NASA's ICESat-2 photon-counting laser altimeter[J]. Remote Sensing of Environment,233. DOI:org/10.1016/j.rse.2019.111352.
doi: org/10.1016/j.rse.2019.111352
28 Brêda J P L F, Paiva R C D, Bravo J M, et al. Assimilation of satellite altimetry data for effective river bathymetry[J]. Water Resources Research, 2019, 55(9). DOI:org/10.1029/2018WR024010.
doi: org/10.1029/2018WR024010
29 Monteiro K D A, Antonio carlos de barros corrêa. application of morphometric techniques for the delimitation of Borborema Highlands, northeast of Brazil, eastern escarpment from drainage knick-points[J]. Journal of South American Earth Sciences, 2020, 103:102729.
30 Colavitto B,Sagripanti L,Jagoe L, et al. Quaternary tectonics in the southern Central Andes(37-38° S): Retroarc compression inferred from morphotectonics and numerical models[J]. Journal of South American Earth Sciences,2020,102:102697.
31 Wu Wenjiao, Zhang Shifang, Zhao Shangmin. Analysis and comparison of SRTM1 DEM and ASTER GDEM V2 Data[J]. Journal of Geo-information Science, 2017, 19(8):1108-1115.
31 武文娇, 章诗芳, 赵尚民. SRTM1 DEM与ASTER GDEM V2数据的对比分析[J]. 地球信息科学学报, 2017, 19(8):1108-1115.
32 Zhongqiong Z, Qingbai W, Xueyi X, et al. Spatial distribution and changes of Xing'an permafrost in China over the past three decades[J]. Quaternary International, 2019, 523:16-24.
33 Zhang G, Shen W, Zhu Y, et al. Evaluation of ASTER GDEM in the northeastern margin of Tibetan Plateau in gra-vity reduction[J]. Geodesy and Geodynamics, 2017, 8(5): 335-341.
34 Yue L, Shen H, Zhang L, et al. High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 123:20-34.
[1] 陈正宇,彭淑雯,朱号东,张春涛,习晓环. 基于样本加权PointNet++的输电通道点云分类研究[J]. 遥感技术与应用, 2021, 36(6): 1299-1305.
[2] 常潇月,荆林海,林沂. 基于机载LiDAR数据和Landsat 8影像的芬兰北部泰加林—苔原过渡带提取[J]. 遥感技术与应用, 2021, 36(6): 1259-1271.
[3] 刘焕军,马雨阳,杨昊轩,姜芸,巩超,吕航. 引入NDVI改进SRTM DEM的新方法[J]. 遥感技术与应用, 2021, 36(5): 1083-1091.
[4] 赵勋,岳彩荣,李春干,谷雷,张国飞. 基于机载LiDAR点云数据森林郁闭度估测[J]. 遥感技术与应用, 2020, 35(5): 1136-1145.
[5] 王鑫蕊, 晋锐, 林剑, 曾祥飞, 赵泽斌. 有云Landsat TM/OLI影像结合DEM提取青藏高原湖泊边界的自动算法研究[J]. 遥感技术与应用, 2020, 35(4): 882-892.
[6] 陈佩奇,赖旭东,李咏旭. 一种城区LiDAR点云数据的抽稀算法[J]. 遥感技术与应用, 2019, 34(6): 1245-1251.
[7] 刘培,余志远,马威,韩瑞梅,陈正超,王涵,杨磊库. 基于地形信息的Landsat与Radarsat-2遥感数据协同分类研究[J]. 遥感技术与应用, 2019, 34(6): 1269-1275.
[8] 张玉伦, 王叶堂. 低山丘陵区多源数字高程模型误差分析[J]. 遥感技术与应用, 2018, 33(6): 1112-1121.
[9] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[10] 吴迪,史文中,高利鹏,张华,何鹏飞. 一种改进的基于上下文信息的多源数据融合目标提取方法[J]. 遥感技术与应用, 2018, 33(1): 128-135.
[11] 梁茜茜,张汉德,孙根云,王鹏. 基于机载激光雷达数据的海岸带水域提取方法[J]. 遥感技术与应用, 2018, 33(1): 136-142.
[12] 曹晓晨,尤红建,刘佳音,王峰. 基于误差建模的SRTM高程精度提升方法研究[J]. 遥感技术与应用, 2017, 32(5): 801-808.
[13] 卜帆,石玉立. 机载LiDAR高差和高分影像的城市树冠提取比较[J]. 遥感技术与应用, 2017, 32(5): 875-882.
[14] 王琳,武虹. 基于DEM的遗址域定量算法及可获取耕地统计[J]. 遥感技术与应用, 2017, 32(2): 274-281.
[15] 董保根,马洪超,车森,解龙根,何乔. LiDAR点云支持下地物精细分类的实现方法[J]. 遥感技术与应用, 2016, 31(1): 165-169.