Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (6): 1339-1349    DOI: 10.11873/j.issn.1004-0323.2021.6.1339
遥感应用     
一种不透水面精细制图新方法及其在城市SDGs指标评估上的应用
符冰雪1(),张继超1,杜文杰2,3,王鹏龙4,孙中昶2,3()
1.辽宁工程技术大学 测绘与地理科学学院,辽宁 阜新 123000
2.中国科学院空天信息创新研究院,北京 100094
3.海南省地球观测重点实验室,海南 三亚 572029
4.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
Effective and Novel Impervious Surface Fine Mapping Method and Its Application on Monitoring Urban Sustainable Development Goals
Bingxue Fu1(),Jichao Zhang1,Wenjie Du2,3,Penglong Wang4,Zhongchang Sun2,3()
1.School of Geomatics,Liaoning Technical University,Fuxin 123000,China
2.Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China
3.Laboratory Earth Observation Hainan Province,Sanya Institute of Remote Sensing,Sanya 572029,China
4.Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
 全文: PDF(7334 KB)   HTML
摘要:

城市不透水面是城市化程度的重要指示器,也是城市环境的重要敏感因子。联合国提出的城市可持续发展SDG11.3.1指标——城市土地使用率与人口增长率之比(LCRPGR)需要有效监测土地城镇化与人口城镇化关系。针对其监测与评估中高分辨率和高精度城市用地产品缺失,以及低纬度地区城市可持续发展研究较少的问题。基于Google Earth Engine平台,提出一种多时相升降轨SAR与光学影像等多源数据融合的不透水面提取方法,提取了2015年和2018年10 m分辨率印度不透水面。根据人口格网界定城市范围,将范围内不透水面面积与城市人口进行耦合,用于指标计算。研究结果表明:①精度验证结果显示,两期产品总体精度(OA)高于91%,Kappa系数高于0.82,R2值分别为0.85和0.86,并与其他产品细节对比,证明了方法的有效性;②印度总体不透水面面积由2015年的47 499.35 km2增加到2018年的49 944.69 km2,城市平均LCRPGR为0.76,表明其城市人口城镇化大于土地城镇化,城市可持续发展面临挑战。结合空间分析,印度城市可持续发展水平存在南北差异、东西差异以及沿海与内陆的差异。

关键词: 城镇化SDG11.3.1指标Google Earth Engine多源数据融合不透水面    
Abstract:

The percent cover of impervious surfaces has been widely used as an indicator to quantify the urbanization level and urban environmental quality, and is essential to understand the interactions between human and the environment. The indicator 11.3.1 proposed by the United Nations-The ratio of land consumption rate to population growth rate (LCRPGR) requires effective monitoring of the relationship between land urbanization and population urbanization. In the light of the existing problems at present, including the lack of high-resolution and high-precision urban land products, as well as few researches on urban sustainable development in low latitude areas. Based on the Google Earth Engine platform, a method of multi-source (SAR and optical) data fusion was proposed to extract India impervious surface information with 10-m resolution in 2015 and 2018. In addition, the city scope was determined according to the population grid, and the urban impervious surface area was coupled with urban population to calculate the index. The results show that: (1) The overall accuracy of impervious surface mapping in this paper is higher than 91%, and the average Kappa coefficient is higher than 0.82, and values of R2 are 0.85 and 0.86, respectively, the overall accuracy is high. Comparised with the details of other products, the effectiveness of the method was further proved. (2) The average LCRPGR of cities is 0.76, indicating that the population growth rate of cities is higher than that of land expansion in India, and urban sustainable development faces challenges. Combined with spatial analysis, there are differences in the level of sustainable development of Indian cities from north to south, east to west, and coastal and inland.

Key words: Urbanization    SDG 11.3.1 indicator    Google Earth Engine    Multi-source data fusion    Impervious surface area
收稿日期: 2020-07-27 出版日期: 2022-01-26
ZTFLH:  P237  
基金资助: 海南省重点研发计划项目(ZDYF2019008);中国科学院战略性先导科技专项(XDA19030104);国家重点研发计划项目(2016YFA0600302-04)
通讯作者: 孙中昶     E-mail: 18342800105@163.com;sunzc@aircas.ac.cn
作者简介: 符冰雪(1996-),女,辽宁沈阳人,硕士研究生,主要从事城市遥感研究。E?mail: 18342800105@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
符冰雪
张继超
杜文杰
王鹏龙
孙中昶

引用本文:

符冰雪,张继超,杜文杰,王鹏龙,孙中昶. 一种不透水面精细制图新方法及其在城市SDGs指标评估上的应用[J]. 遥感技术与应用, 2021, 36(6): 1339-1349.

Bingxue Fu,Jichao Zhang,Wenjie Du,Penglong Wang,Zhongchang Sun. Effective and Novel Impervious Surface Fine Mapping Method and Its Application on Monitoring Urban Sustainable Development Goals. Remote Sensing Technology and Application, 2021, 36(6): 1339-1349.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.6.1339        http://www.rsta.ac.cn/CN/Y2021/V36/I6/1339

图1  研究区地形分布与验证区块布设图 审图号:GS(2016)1666
数据集空间分辨率/m时间覆盖空间覆盖数据类型
Sentinel 1A 地距产品102014年~现在全球栅格(tif)
Sentinel 2A L1C级10/202015年~现在全球栅格(tif)
基于MODIS生成的生态数据集全球矢量(shp)
SRTM302000年60°S~60°N栅格(tif)
World Pop Data1002000年~现在全球栅格(tif)
联合国发布的人口大于30万的城市全球矢量(shp)
Open Street Map(OSM)全球矢量(shp)
表1  研究区域数据详细情况
图2  数据处理流程图 审图号:GS(2016)1666
图3  印度不透水面分布和城市扩张图 审图号:GS(2016)1666
2015年提取结果验证2018年提取结果验证
不透水面透水面UA(%)不透水面透水面UA(%)
不透水面2 63836287.932 65734388.57
透水面1732 82794.231462 85495.13
PA(%)93.8588.656 00094.7989.276 000
OA(%)91.0891.85
Kappa0.820.84
表2  2015年和2018年印度不透水面提取精度验证结果
图4  验证区域散点图
图5  本研究结果与其他城市产品的对比 审图号:GS(2016)1666
图6  印度邦域LCRPGR统计图
图7  印度邦域LCRPGR数值空间分布审图号:GS(2016)1666
1 Messerli P, Murniningtyas E, Eloundou-Enyegue P, et al. Global sustainable development report 2019: the future is now-science for achieving sustainable development[R]. New York: United Nations, Department of Economic and Social Affairs, 2019.
2 Nations United. Department of Economic and Social Affairs, division Population. World Urbanization Prospects: The 2018 Revision[R]. New York: United Nations, Department of Economic and Social Affairs, 2019.
3 Li Zhili, Kuang Wenhui, Zhang Shu. Remote sensing monitoring and spatiotemporal pattern of land use/cover change in built-up area of Tianjin in the past 70 years[J]. Remote Sensing Technology and Application, 2020, 35(3): 527-536.
3 李智礼, 匡文慧, 张澍. 近70 a天津主城区城市土地利用/覆盖变化遥感监测与时空分析[J]. 遥感技术与应用, 2020, 35(3): 527-536.
4 Cheng Kai, Wang Juanle, Jaahanaa D, et al. Urban expansion and driving force analysis of ulaanbaatar in mongolia in recent thirty years[J]. Remote Sensing Technology and Application, 2019, 34(1): 90-100.
4 程凯, 王卷乐, Davaadorj Jaahanaa , 等. 近30 a来蒙古国乌兰巴托市城镇扩张及其驱动力分析[J]. 遥感技术与应用, 2019, 34(01): 90-100.
5 Nations United. Department of Economic and Social Affairs, Division for Sustainable Development Goals.Transforming Our World: The 2030 Agenda for Sustainable Development[R]. New York: United Nations,Department of Economic and Social Affairs, 2015.
6 Sun Z C, Wang C Z, Guo H D, et al. A Modified Normalized Difference Impervious Surface Index (MNDISI) for automatic urban mapping from landsat imagery[J]. Remote Sensing, 2017, 9(9): 942. DOI: 10.3390/rs9090942.
doi: 10.3390/rs9090942
7 Chen Xin, Kuang Wenhui. Remote sensing monitoring and compari son of urban land cover changes in typical cities in China- Kazakhstan arid region based on cloud platform[J]. Remote Sensing Technology and Application, 2020, 35(3): 548-557.
7 陈馨, 匡文慧. 基于云平台的中哈干旱区典型城市地表覆盖变化遥感监测与比较[J]. 遥感技术与应用, 2020, 35(3):548-557.
8 Arnold Jr C L, Gibbons C J. Impervious surface coverage: the emergence of a key environmental indicator[J]. Journal of the American Planning Association,1996,62(2):243-258. DOI: 10.1080/01944369608975688.
doi: 10.1080/01944369608975688
9 Wu M F,Zhao X W,Sun Z C, et al. A Hierarchical multiscale super-pixel-based classification method for extracting urban impervious surface using deep residual network from worldvew-2 and LiDAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019,12(1):210-222. DOI:10.1109/JSTARS.2018. 2886288.
doi: 10.1109/JSTARS.2018. 2886288
10 Gong P, Li X C, Wang J, et al. Annual maps of Global Artificial Impervious Area (GAIA) between 1985 and 2018[J]. Remote Sensing of Environment,2020,236:111510. DOI: 10.1016/j.rse.2019.111510.
doi: 10.1016/j.rse.2019.111510
11 Long Shuang, Guo Zhengfei, Xu Li, et al. Spatiotemporal variations of fractional vegetation coverage in china based on Google Earth Engine[J]. Remote Sensing Technology and Application, 2020, 35(2): 326-334.
11 龙爽, 郭正飞, 徐粒, 等. 基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J]. 遥感技术与应用, 2020, 35(2): 326-334.
12 Fu Tianmeng, Zhang Li, Chen Bowei, et al. Monitoring of land cover change based on Google Earth Engine platform: a case study of Sulawesi island[J]. Remote Sensing Technology and Application, 2021,36(1):55-64.
12 付甜梦,张丽,陈博伟,等. 基于GEE平台的海岛地表覆盖提取及变化监测—以苏拉威西岛为例[J]. 遥感技术与应用,2021,36(1):55-64.
13 Xian G, Homer C. Updating the 2001 national land cover database impervious surface products to 2006 using Landsat imagery change detection methods[J]. Remote Sensing of Environment,2010,114(8):1676-1686. DOI:10.1016/j.rse.2010. 02.018.
doi: 10.1016/j.rse.2010. 02.018
14 Pesaresi M, Ehrilch D, Florczyk A J, et al. GHS built-up grid, derived from landsat,multitemporal(1975,1990,2000, 2014)[R]. Brussels: European Commission, Joint Research Centre, JRC Data Catalogue, 2015.
15 Esch T, Marconcini M, Felbier A, et al. Urban footprint processor-fully automated processing Chain generating settlement masks from global data of the TanDEM-X mission[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1617-1621. DOI: 10.1109/LGRS.2013.2272953.
doi: 10.1109/LGRS.2013.2272953
16 Liu X P, Hu G H, Chen Y M, et al. High-resolution multi-temporal mapping of global urban land using landsat images based on the Google Earth Engine Platform[J]. Remote Sensing of Environment, 2018, 209: 227-239. DOI: 10.1016/j.rse.2018.02.055.
doi: 10.1016/j.rse.2018.02.055
17 Gong P, Liu H, Zhang M N, et al. Stable classification with limited sample: transferring a 30 m resolution sample set collected in 2015 to mapping 10 m resolution Global Land Cover in 2017[J]. Science Bulletin,2019,64(6):370-373. DOI: 10.1016/j.scib.2019.03.002.
doi: 10.1016/j.scib.2019.03.002
18 Wang Suyun, Sun Zhongchang, Guo Huadong, et al. Extracting builtup areas from TerraSAR-X data using object-oriented classification method[J]. Remote Sensing Technology and Application,2017,32(4):780-786.
18 王苏芸, 孙中昶, 郭华东, 等. 基于面向对象的东营市城乡建设用地信息提取[J]. 遥感技术与应用,2017,32(4):780-786.
19 Dong Chao, Zhao Gengxing. Influence of time series data quality on land cover classification accuracy[J]. Remote Sensing Technology and Application, 2020, 35(3): 558-566.
19 董超, 赵庚星. 时序数据集构建质量对土地覆盖分类精度的影响研究[J]. 遥感技术与应用,2020,35(3):558-566.
20 Tang Tingyuan, Fu Bolin, He Suyun, et al. Identification of typical land features in the Lijiang river basin with Fusion optics and Radar[J]. Remote Sensing Technology and Application, 2020, 35(2): 448-457.
20 唐廷元, 付波霖, 何素云, 等.基于GF-1和Sentinel-1A的漓江流域典型地物信息提取[J]. 遥感技术与应用,2020,35(2):448-457.
21 Chen Kangming, Zhu Xudong. Remote sensing of spatio-temporal dynamics of saltmarsh vegetation along south China coast based on Google Earth Engine[J]. Remote Sensing Technology and Application,2021,36(4):751-759.
21 陈康明, 朱旭东. 基于Google Earth Engine的南方滨海盐沼植被时空演变特征分析[J]. 遥感技术与应用,2021,36(4):751-759.
22 Chen Zihan, Wang Feng, Xu Ning, et al. Cloud removal by fusing optical and SAR images based on improved PCNN in NSST domain[J]. Remote Sensing Technology and Application, 2021, 36(4): 810-819.
22 陈子涵, 王峰, 许宁,等. 基于改进NSST-PCNN的光学与SAR图像融合去云方法[J]. 遥感技术与应用, 2021, 36(4): 810-819.
23 Sun Z C,Yu S S,Guo H D,et al. Assessing 40 years of spatial dynamics and patterns in megacities along the belt and road region using satellite imagery[J]. International Journal of Digital Earth,2020,14:71-87. DOI:10.1080/17538947. 2020.1747560.
doi: 10.1080/17538947. 2020.1747560
24 Liu X P, Huang Y H, Xu X C, et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015[J]. Nature Sustainability,2020,3:564-570. DOI:10.6084/m9.figshare.11513178.v1.
doi: 10.6084/m9.figshare.11513178.v1
25 Melchiorri M, Pesaresi M, Florczyk A J, et al. Principles and applications of the global human settlement layer as baseline for the land use efficiency indicator-SDG 11.3.1[J]. ISPRS International Journal of Geo-Information,2019,8(2):96. DOI: 10.3390/ijgi8020096.
doi: 10.3390/ijgi8020096
26 Schiavina M, Melchiorri M, Corbane C, et al. Multi-scale estimation of land use efficiency (SDG 11.3.1) across 25 years using global open and free data[J]. Sustainability, 2019, 11(20): 5674. DOI: 10.3390/su11205674.
doi: 10.3390/su11205674
27 Bank World. World development indicators[DB/OL]. https:∥databank. shihang.org/source/world-development-indicators. (2018-10-29),[2020-6-10].
28 Kaka N, Madgavkar A. India’s ascent: five opportunities for growth and transformation[EB/OL]. –insights/employment-and-growth/indias-ascent-five-opportunities-for-growth-and-transformation.(2016- 8-11), [2020-5-15].
29 Sun Z C, Xu R, Du W J, et al. High-resolution urban land mapping in China from sentinel 1A/2 imagery based on Google Earth Engine[J]. Remote Sensing, 2019, 11(7): 752. DOI: 10.3390/rs11070752.
doi: 10.3390/rs11070752
30 Rousel J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the great plains with ERTS[C]∥Proceedings of the Third Earth Resources Technology Satellite—1 Symposium; NASA SP-351. 1973: 309-317.
31 Xu Hanqiu. A study on information extraction of water body with the Modified Normalized Difference Water Index (MNDWI)[J]. Journal of Remote Sensing.2005,9(5):589-595.徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报,2005,9(5):589-595.
32 Feyisa G L, Meilby H, Fensholt R, et al. Automated water extraction index: a new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014, 140: 23-35. DOI: 10.1016/j.rse.2013.08.029.
doi: 10.1016/j.rse.2013.08.029
33 Wu W, Li Q, Zhang Y, Du X, et al. Two-Step Urban Water Index(TSUWI): A new technique for high-resolution mapping of urban surface water[J]. Remote Sensing,2018,10(11):1704. DOI: 10.3390/rs10111704.
doi: 10.3390/rs10111704
34 Olson D M, Dinerstein E, Wikramanayake E D, et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity[J]. BioScience,2001,51(11): 933-938. DOI: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2.
doi: 10.1641/0006-3568(2001)051
35 Xu Rong, Zhang Zengxiang, Zhao Chunzhe. Different models used in extraction of lake water body based on MODIS date[J]. Remote Sensing Information, 2015, 30(1): 111-118.
35 徐蓉, 张增祥, 赵春哲. 湖泊水体遥感提取方法比较研究[J]. 遥感信息, 2015, 30(1): 111- 118.
36 Li Peilin, Liu Xiaoping, Huang Yinghuai, et al. Mapping impervious surface dynamics of Guangzhou downtown based on Google Earth Engine[J]. Journal of Geo-information Science, 2020, 22(3): 638-648.
36 李培林, 刘小平, 黄应淮, 等. 基于GEE平台的广州市主城区不透水面时间序列提取[J]. 地球信息科学学报, 2020, 22(3): 638-648.
37 Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision,Graphics, and Image Processing, 1985,29(3):273-285. DOI:10.1016/0734-189X(85)90125-2.
doi: 10.1016/0734-189X(85)90125-2
38 Batty M. The size, scale, and shape of cities[J]. Science, 2008,319(5864):769-771. DOI:10.1126/science.1151419.
doi: 10.1126/science.1151419
39 Dong Lei, Wang Hao, Zhao Hongrui. The definition of city boundary and scaling law[J]. Acta Geographica Sinsce,2017, 72(2): 213-223.
39 董磊, 王浩, 赵红蕊. 城市范围界定与标度律[J]. 地理学报, 2017, 72(2): 213-223.
40 Dijkstra L, Poelman H. A harmonised definition of cities and rural areas: the new degree of urbanization[R]. WP, 2014, 1: 2014.
41 United Nations Human Settlements Program. Module 3: Land Consumption Rate[R]. New York: United Nations,Department of Economic and Social Affairs, 2018.
[1] 吴川虎,陶于祥,罗小波. 基于Google Earth Engine的重庆市植被指数长时间序列S-G滤波方法的改进与实现[J]. 遥感技术与应用, 2021, 36(5): 1189-1198.
[2] 陈康明,朱旭东. 基于Google Earth Engine的南方滨海盐沼植被时空演变特征分析[J]. 遥感技术与应用, 2021, 36(4): 751-759.
[3] 王淑静,赖佩玉,郝斌飞,马明国,韩旭军. 西南地区2001~2019年森林损失特征遥感监测与时空分析[J]. 遥感技术与应用, 2021, 36(3): 552-563.
[4] 吴世坤,孙玉. 利用多源数据分析呼伦湖地表与地下水的动态变化[J]. 遥感技术与应用, 2021, 36(1): 155-164.
[5] 杨玉婷,汤家法,边金虎,李爱农,雷光斌,黄平,蒋梓淳. 加尔各答市地表温度与不透水面比例季相相关性研究[J]. 遥感技术与应用, 2021, 36(1): 79-89.
[6] 沈谦,朱长明,张新,黄巧华,杨程子. 1992~2013我国干旱区城市不透水遥感制图与扩张过程分析[J]. 遥感技术与应用, 2020, 35(5): 1178-1186.
[7] 王明,刘正佳,陈元琰. 基于Sentinel-2波段/产品的图像云检测效果对比研究[J]. 遥感技术与应用, 2020, 35(5): 1167-1177.
[8] 刘美,杜国明,于凤荣,匡文慧. 哈尔滨城乡梯度建设用地结构变化及不透水面遥感监测分析[J]. 遥感技术与应用, 2020, 35(5): 1206-1217.
[9] 陈馨,匡文慧. 基于云平台的中哈干旱区典型城市地表覆盖变化遥感监测与比较[J]. 遥感技术与应用, 2020, 35(3): 548-557.
[10] 李智礼,匡文慧,张澍. 近70 a天津主城区城市土地利用/覆盖变化遥感监测与时空分析[J]. 遥感技术与应用, 2020, 35(3): 527-536.
[11] 谭美宝,冉有华,苏阳,李新,杜得彦,廉耀康. 黑河流域2001~2017年植被变化特征及其可延续性评价[J]. 遥感技术与应用, 2020, 35(2): 335-344.
[12] 龙爽,郭正飞,徐粒,周华真,方伟华,许映军. 基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J]. 遥感技术与应用, 2020, 35(2): 326-334.
[13] 柴旭荣,李明,周义,王金风,田庆春. 影像的土地覆被快速分类[J]. 遥感技术与应用, 2020, 35(2): 315-325.
[14] 郝斌飞,韩旭军,马明国,刘一韬,李世卫. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用, 2018, 33(4): 600-611.
[15] 张滔,唐宏. 基于Google Earth Engine的京津冀2001~2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4): 593-599.