Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (6): 1388-1397    DOI: 10.11873/j.issn.1004-0323.2021.6.1388
遥感应用     
基于Landsat影像的北京植被覆盖度变化趋势分析
王曦1,2(),张怡雯3
1.中国自然资源经济研究院,北京 101149
2.中国地质大学(北京)经济管理学院,北京 100083
3.水利部信息中心(水利部水文水资源监测预报中心),北京 100053
An Analysis of Change Trend of Fractional Vegetation Cover in Beijing based on Landsat Imagery
Xi Wang1,2(),Yiwen Zhang3
1.Chinese Academy of Natural Resources Economics,Beijing 101149,China
2.School of Economics and Management,China University of Geosciences (Beijing),Beijing 100083,China
3.Information Center (Hydrology Monitor and Forecast Center),Ministry of Water Resources,Beijing 100053,China
 全文: PDF(5458 KB)   HTML
摘要:

植被覆盖状况是决定大城市地区生态环境质量的重要因素之一,但在快速城市化进程下城市内部及周边地区植被覆盖的动态变化状况尚不清晰,需结合遥感数据进行分析。以北京市为研究区,基于Landsat影像获取植被覆盖度的空间分布,计算移动窗口内植被覆盖度的均值和标准差,将其分别作为表征局部植被覆盖水平和植被覆盖度异质性的指标,采用Mann-Kendall检验识别均值和标准差具有显著变化趋势的窗口,并使用Sen’s Slope估算变化梯度,进而分析北京植被覆盖度变化趋势。结果表明在1984~2014年间:①植被覆盖水平呈显著上升趋势的区域主要分布在市中心与西部和北部山区,而在市中心外“东北、东、东南、南、西南”方向的近郊分布有大量植被覆盖水平显著下降的区域;②植被覆盖度异质性呈显著上升趋势的区域主要分布在平原区,呈显著下降趋势的区域主要集中在北部山区。

关键词: 植被覆盖度变化趋势Landsat北京    
Abstract:

Vegetation cover is a crucial determinant of ecological environment in big cities. But the spatial-temporal dynamics of vegetation cover in the inner city and peri-urban areas in the process of rapid urbanization are still unclear and need to be researched in combination with remote sensing data. This study estimated the distribution of Fraction Vegetation Cover (FVC) of Beijing by using Landsat images, and calculated moving window mean value and standard deviation of FVC, which were respectively used as proxies for local vegetation coverage and FVC heterogeneity. Then the moving windows with significant change trend were identified by Mann-Kendall test and the slope of change was estimated by Sen’s Slope. And on this basis, we analyzed the change trend of FVC of Beijing. The results showed that during 1984~2014 the areas with significant increasing trends of vegetation coverage were mainly distributed in the urban center and the north and the west mountainous areas, and the areas with significant decreasing trends of vegetation coverage were mainly distributed in the northeast, east, southeast, south and southwest suburbs. Besides, the areas with significant increasing trends of FVC heterogeneity were mainly in flatlands while the areas with significant decreasing trends of FVC heterogeneity were mainly in the north mountainous areas.

Key words: Fractional Vegetation Cover    Change trend    Landsat    Beijing
收稿日期: 2020-09-28 出版日期: 2022-01-26
ZTFLH:  TP79  
基金资助: 自然资源部部门预算项目“全民所有自然资源资产变动监测”(121102000000190020)
作者简介: 王曦(1987-),男,北京人,博士后,主要从事土地利用与管理研究。E?mail: wangx87@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王曦
张怡雯

引用本文:

王曦,张怡雯. 基于Landsat影像的北京植被覆盖度变化趋势分析[J]. 遥感技术与应用, 2021, 36(6): 1388-1397.

Xi Wang,Yiwen Zhang. An Analysis of Change Trend of Fractional Vegetation Cover in Beijing based on Landsat Imagery. Remote Sensing Technology and Application, 2021, 36(6): 1388-1397.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.6.1388        http://www.rsta.ac.cn/CN/Y2021/V36/I6/1388

图1  研究区范围
图2  北京植被覆盖度空间分布与变化(a)植被覆盖度空间分布 (b)植被覆盖度比重
图3  北京分区的植被覆盖度特征
图4  北京植被覆盖度窗口均值变化梯度的空间分布
7×7窗口11×11窗口21×21窗口31×31窗口41×41窗口
北京全市17.33%/6.05%17.43%/6.77%16.14%/8.09%14.92%/9.02%13.94%/9.71%
东城区38.06%/0.67%42.49%/0.33%49.38%/0.01%56.03%/0.00%63.98%/0.00%
西城区37.40%/0.51%43.13%/0.23%53.34%/0.06%59.39%/0.00%63.22%/0.00%
朝阳区4.92%/16.24%4.72%/19.03%4.55%/24.50%4.48%/28.71%4.29%/31.48%
丰台区5.42%/12.14%4.57%/13.59%3.06%/16.02%2.20%/17.84%1.55%/19.88%
石景山区10.23%/7.08%7.11%/7.98%2.33%/10.29%0.97%/12.07%0.25%/12.31%
海淀区9.40%/9.74%8.78%/11.31%7.87%/13.36%7.46%/14.50%7.30%/15.86%
门头沟区18.42%/0.73%16.81%/0.79%12.57%/1.01%9.36%/1.12%7.16%/1.17%
房山区10.53%/6.56%8.44%/7.46%5.42%/9.05%4.08%/10.04%3.27%/10.65%
通州区0.94%/17.80%0.61%/20.85%0.26%/27.46%0.11%/32.72%0.08%/36.71%
顺义区3.42%/15.49%3.10%/18.08%2.70%/22.95%2.54%/26.15%2.48%/28.47%
昌平区14.71%/5.47%13.56%/6.07%9.78%/6.97%6.97%/7.46%5.12%/7.79%
大兴区1.78%/14.90%1.52%/16.45%1.09%/19.78%0.96%/22.21%0.85%/23.81%
怀柔区31.38%/1.94%33.79%/2.03%34.48%/2.01%33.90%/1.93%33.39%/1.93%
平谷区18.13%/5.63%18.48%/5.66%15.91%/5.16%12.85%/4.59%10.25%/4.21%
密云区25.23%/1.90%26.01%/1.71%24.93%/1.29%23.80%/1.08%22.48%/1.00%
延庆区29.43%/0.55%31.21%/0.47%31.71%/0.41%30.69%/0.35%29.54%/0.34%
表1  植被覆盖度窗口均值呈显著(p-value<0.05)上升/下降趋势的面积比重
图5  植被覆盖度窗口均值变化的空间特征
图6  北京植被覆盖度窗口标准差变化梯度的空间分布
7×7窗口11×11窗口21×21窗口31×31窗口41×41窗口
北京全市8.6%/14.6%11.2%/14.5%16.2%/12.6%20.1%/10.8%23.2%/9.5%
东城区53.43%/0.86%62.79%/0.77%70.78%/0.65%75.54%/0.32%77.30%/0.21%
西城区55.44%/0.13%67.88%/0.04%80.27%/0.02%85.73%/0.00%88.55%/0.00%
朝阳区18.24%/1.68%21.97%/1.63%29.91%/1.24%36.44%/0.92%41.86%/0.82%
丰台区14.34%/1.83%17.94%/1.38%26.05%/1.18%32.78%/1.18%36.55%/1.09%
石景山区11.69%/6.17%13.65%/4.29%18.17%/1.84%20.31%/0.85%21.38%/0.86%
海淀区19.60%/3.74%24.38%/2.81%34.29%/1.83%41.16%/1.48%46.46%/1.31%
门头沟区1.88%/16.16%2.50%/14.81%3.75%/11.06%4.62%/8.09%5.23%/6.05%
房山区9.14%/8.22%12.24%/6.19%18.67%/3.13%23.32%/1.66%26.68%/0.86%
通州区16.42%/1.11%20.19%/0.73%29.16%/0.36%37.82%/0.32%44.76%/0.31%
顺义区17.08%/2.71%22.93%/2.40%35.65%/1.90%46.35%/1.64%55.07%/1.50%
昌平区8.23%/13.35%11.24%/12.22%18.09%/8.85%23.74%/6.41%28.04%/4.94%
大兴区17.50%/1.18%21.51%/0.89%29.37%/0.49%35.28%/0.25%39.99%/0.13%
怀柔区3.67%/27.72%4.98%/29.66%7.45%/28.58%9.13%/26.09%10.48%/23.77%
平谷区9.75%/16.10%13.54%/15.71%20.89%/11.88%26.05%/8.10%30.44%/5.46%
密云区4.67%/21.87%6.00%/21.84%8.08%/18.61%9.27%/15.59%10.14%/13.34%
延庆区2.57%/25.15%3.24%/27.08%4.34%/27.40%5.10%/26.02%5.55%/24.77%
表2  植被覆盖度窗口标准差呈显著(p-value<0.05)上升/下降趋势的面积比重
图7  植被覆盖度窗口标准差变化的空间特征
1 国家统计局. 年度数据[DB/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01,020年8月1日.
2 Johnson D, Wilson J. The socio-spatial dynamics of extreme urban heat events: the case of heat-related deaths in Philadelphia[J]. Applied Geography,2009,29(3):419-434. DOI: 10.1016/j.apgeog.2008.11.004.
doi: 10.1016/j.apgeog.2008.11.004
3 Weng Q, Lu D, Schubring J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies[J]. Remote Sensing of Environment, 2004, 89(4): 467-483. DOI: 10.1016/j.rse.2003.11.005.
doi: 10.1016/j.rse.2003.11.005
4 Chen X, Zhao H, Li P, et al. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes[J]. Remote Sensing of Environment, 2006,104(2):133-146. DOI:10.1016/j.rse.2005.11.016.
doi: 10.1016/j.rse.2005.11.016
5 Chen Y, Wong N. Thermal impact of strategic landscaping in cities: a review[J]. Advances in Building Energy Research, 2009,3(1):237-260. DOI:10.3763/aber.2009.0309.
doi: 10.3763/aber.2009.0309
6 Wang Wenjie, Shen Wenming, Liu Xiaoman, et al. Research on the relation of the urbanization and urban heat island effect changes in Beijing based on remote sensing[J]. Research of Environmental Sciences,2006,19(2):44-48.
6 王文杰, 申文明, 刘晓曼, 等. 基于遥感的北京市城市化发展与城市热岛效应变化关系研究[J]. 环境科学研究, 2006, 19(2): 44-48.
7 Xiao Yu, Wang Shuo, Li Na, et al. Atmospheric PM2.5 removal by green spaces in Beijing[J]. Resources Science, 2015, 37(6): 1149-1155.
7 肖玉, 王硕, 李娜, 等. 北京城市绿地对大气PM2.5 的削减作用[J]. 资源科学,2015,37(6): 1149-1155.
8 Li Shaoning, Kong Lingwei, Liu Bin, et al. Spatial and temporal variation of PM2.5 concentration in urban forest vegetation region[J]. Environmental Science and Technology,2016,39(7):164-173.
8 李少宁, 孔令伟, 刘斌, 等. 城市森林植被区空气PM2.5质量浓度时空变化[J]. 环境科学与技术,2016,39(7):164-173.
9 Wang Yanran, Zhang Xuexia, Zhao Jingyao, et al. Temporal and spatial distribution of PM2.5 and its relationship with vegetation coverage in Beijing during the period of 2013~2014[J]. Ecology and Environmental Sciences,2016,25(1): 103-111.
9 王嫣然, 张学霞, 赵静瑶, 等. 2013~2014年北京地区PM2.5时空分布规律及其与植被覆盖度关系的研究[J]. 生态环境学报,2016,25(1):103-111.
10 Tallis M, Taylor G, Sinnett D, et al. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments[J]. Landscape and Urban Planning,2011,103(2):129-138. DOI: 10.1016/j.landurbplan.2011.07.003.
doi: 10.1016/j.landurbplan.2011.07.003
11 Akbari H, Pomerantz M, Taha H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas[J]. Solar Energy,2001,70(3):295-310. DOI: 10.1016/S0038-092X(00)00089-X.
doi: 10.1016/S0038-092X(00)00089-X
12 Li Chao,Zhao Shuqing,Fang Jingyun.Vegetation cover change and driving factors in Fujian province between 1975 and 2014[J]. Chinese Journal of Plant Ecology,2017,41(2):157-164.李超, 赵淑清, 方精云. 1975~2014年福建省植被覆盖变化及其驱动因素[J]. 植物生态学报,2017,41(2),157-164.
13 Enaruvbe G, Atafo O. Land cover transition and fragmentation of river ogba catchment in Benin City, Nigeria[J]. Sustainable Cities and Society, 2019, 45: 70-78. DOI: 10.1016/j.scs.2018.11.022.
doi: 10.1016/j.scs.2018.11.022
14 Shi Shushu, Kuang Wenhui, Dong Siqi. Spatiotemporal pattern of urban-rural aradient land cover changes and their impact on urban heat island in Xi’an city since the 21st century[J].Remote Sensing Technology and Application, 2020, 35(3): 537-547.
14 史姝姝, 匡文慧, 董斯齐. 21世纪以来西安城乡梯度土地覆盖变化及对城市热岛影响时空特征[J]. 遥感技术与应用, 2020, 35(3): 537-547.
15 Lu Y, Coops N C, Hermosilla T. Estimating urban vegetation fraction across 25 cities in Pan-Pacific using Landsat time series data[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2017,126:11-23. DOI:10.1016/j.isprsjprs.2016. 12.014.
doi: 10.1016/j.isprsjprs.2016. 12.014
16 Xie Miaomiao, Wang Yanglin, Li Guicai. Spatial variation of impervious surface area and vegetation cover based on subpixel model in Shenzhen[J]. Resources Science, 2009, 31(2): 257-264.
16 谢苗苗, 王仰麟, 李贵才. 基于亚像元分解的不透水表面与植被覆盖空间分异测度—以深圳市为例[J]. 资源科学, 2009, 31(2): 257-264.
17 Zhou D, Zhao S, Zhang L, et al. Remotely sensed assessment of urbanization effects on vegetation phenology in China's 32 major cities[J]. Remote Sensing of Environment, 2016, 176: 272-281. DOI: 10.1016/j.rse.2016.02.010.
doi: 10.1016/j.rse.2016.02.010
18 Li Zhuo, Sun Ranhao, Zhang Jichao, et al. Temporal-spatial analysis of vegetation coverage dynamics in Beijing-Tianjin-Hebei metropolitan regions[J]. Acta Ecologica Sinica, 2017, 37(22): 7418-7426.
18 李卓, 孙然好, 张继超, 等.京津冀城市群地区植被覆盖动态变化时空分析[J].生态学报, 2017, 37(22): 7418-7426.
19 Zhang Tian, Wang Yanglin, Liu Yanxu, et al. Multi-temporal detection of landscape evolution in western Shenzhen city during 1987~2015[J]. Acta Geographica Sinica, 2016, 71(12): 2170~2184.
19 张甜, 王仰麟, 刘焱序, 等. 1987-2015 年深圳市主城区景观演变过程多时相识别[J]. 地理学报, 2016,71(12): 2170-2184.
20 Hu Shunshi, Peng Yulong, Qin Jianxin, et al. Research on the vegetation index dynamic changes and the impact of urban expansion on It for Changsha-Zhuzhou-Xiangtan urban agglomeration[J].Economic Geography,2019,39(12):178-186.
20 胡顺石, 彭雨龙, 秦建新, 等. 长株潭城市群植被指数动态变化及城市扩展对其影响分析[J]. 经济地理, 2019, 39(12): 178-186.
21 Wen Z, Wu S, Chen J, et al. NDVI indicated long-term interannual changes in vegetation activities and their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China[J]. Science of the Total Environment, 2017,574: 947-959. DOI: 10.1016/j.scitotenv.2016.09.049.
doi: 10.1016/j.scitotenv.2016.09.049
22 Zhang Tao, Tang Hong. Vegetation cover change and urban expansion in Beijing-Tianjin-Hebei during2001~2015 based on Google Earth Engine[J]. Remote Sensing Technology and Application, 2018, 33(4): 593-599.
22 张滔, 唐宏. 基于Google Earth Engine 的京津冀2001~2015年植被覆盖变化与城镇扩张研究[J].遥感技术与应用, 2018,33(4): 593-599.
23 Sen P. Estimates of the regression coefficient based on Kendall’s Tau[J]. Journal of the American Statistical Association, 1968,63(324):1379-1389. DOI:10.1080/01621459.1968. 10480934.
doi: 10.1080/01621459.1968. 10480934
24 北京统计局. 北京统计年鉴2019[DB/OL]. http://nj.tjj.beijing.gov.cn/nj/main/2019-tjnj/zk/indexch.htm,2020年9月15日.
[1] 除多,郑照军,拉巴卓玛,次丹玉珍. 基于Landsat-8 OLI的青藏高原IMS 4 km雪冰产品精度评价[J]. 遥感技术与应用, 2021, 36(6): 1223-1235.
[2] 常潇月,荆林海,林沂. 基于机载LiDAR数据和Landsat 8影像的芬兰北部泰加林—苔原过渡带提取[J]. 遥感技术与应用, 2021, 36(6): 1259-1271.
[3] 罗玲,毛德华,张柏,王宗明,杨桄. 芦苇湿地植被NPP估算方法探索与应用[J]. 遥感技术与应用, 2021, 36(4): 742-750.
[4] 陈康明,朱旭东. 基于Google Earth Engine的南方滨海盐沼植被时空演变特征分析[J]. 遥感技术与应用, 2021, 36(4): 751-759.
[5] 姚杰鹏,杨磊库,陈探,宋春桥. 基于Sentinel-1,2和Landsat 8时序影像的鄱阳湖湿地连续变化监测研究[J]. 遥感技术与应用, 2021, 36(4): 760-776.
[6] 段金亮,张瑞,李奎,庞家泰. 一种基于噪声水平估计的扩展线性光谱分解算法[J]. 遥感技术与应用, 2021, 36(4): 820-826.
[7] 吴欢欢,国巧真,臧金龙,乔悦,朱丽,何云海. 基于Landsat 8与实测数据的水质参数反演研究[J]. 遥感技术与应用, 2021, 36(4): 898-907.
[8] 孙景霞,张冬有,侯宇初. 基于多源遥感数据协同反演森林地表土壤水分研究[J]. 遥感技术与应用, 2021, 36(3): 564-570.
[9] 闫润州,李利伟,王涛,陈俊奇,赖健,张兵. 基于光谱聚类的高分影像复杂地块特征提取方法研究[J]. 遥感技术与应用, 2021, 36(3): 705-712.
[10] 屈炀,袁占良,赵文智,陈学泓,陈家阁. 基于多时序特征和卷积神经网络的农作物分类[J]. 遥感技术与应用, 2021, 36(2): 304-313.
[11] 徐光志,徐涵秋. Sentinel⁃2A MSI 和Landsat 8 OLI两种传感器多光谱信息的交互对比[J]. 遥感技术与应用, 2021, 36(1): 165-175.
[12] 王浩天,汪源,袁强强. 2008~2016年MODIS多角度大气校正气溶胶产品在中国的时空分布及变化趋势[J]. 遥感技术与应用, 2021, 36(1): 217-228.
[13] 徐艳豪,刘晓龙,史正涛,高书鹏. 热带地区Landsat干季数据的无效像元修复方法研究[J]. 遥感技术与应用, 2020, 35(6): 1394-1403.
[14] 王一帆,徐涵秋. 基于客观阈值与随机森林Gini指标的水体遥感指数对比[J]. 遥感技术与应用, 2020, 35(5): 1089-1098.
[15] 李宏达,高小红,汤敏. 基于CNN的不同空间分辨率影像土地覆被分类研究[J]. 遥感技术与应用, 2020, 35(4): 749-758.