Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (1): 45-60    DOI: 10.11873/j.issn.1004-0323.2022.1.0045
青促会十周年专栏     
近10 a全球遥感科学研究的时空动态分析
张红月1(),李宜展2,陈思明1,黄铭瑞3,4,孙玉5()
1.闽江学院 地理与海洋学院,福建 福州 350108
2.中国科学院文献情报中心,北京 100190
3.中国科学院空天信息创新研究院数字地球重点实验室,北京 100094
4.中国科学院大学,北京 100094
5.福州大学 空间数据挖掘与信息共享教育部重点实验室,福建 福州 350108
Spatio-temporal Pattern Analysis of Global Remote Sensing Research in Recent 10 Years
Hongyue Zhang1(),Yizhan Li2,Siming Chen1,Mingrui Huang3,4,Yu Sun5()
1.Geography and Ocean College,Minjiang University,Fuzhou 350108,China
2.National Science Library,Chinese Academy of Sciences,Beijing 100190,China
3.Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China
4.University of Chinese Academy of Sciences,Beijing 100094,China
5.Key Laboratory of Data Mining and Sharing of Ministration of Education,Fuzhou University,Fuzhou 350108,China
 全文: PDF(4049 KB)   HTML
摘要:

以2010~2019年Web of Science 核心合集数据库中自然科学引文索引和社会科学引文索引收录的遥感科学相关文献为数据源,采用统计计量、知识图谱以及质心迁移模型等方法,对近10 a遥感科学发文的时空动态、学科分布、主题热点进行深入分析。结果表明:全球遥感科学论文的作者集中于欧洲、北美以及亚洲东部地区,10 a间遥感科学研究的发文量质心呈现显著的东移特征,影响力质心整体呈现东移趋势,但发文量质心迁移距离远大于影响力质心迁移距离。包括中国、美国、德国、意大利和英国在内的5个高产国家遥感科学论文的主要交叉学科差异明显,美国在13个主要学科中发文表现均衡,中国在天文与天体物理、生态学等交叉学科发文量偏低。5个高产国家的主题热点也存在差别,中国学者关注全球变化及青藏高原等方面的研究,美国学者综合遥感技术对火星、月球等开展了探索。近10 a来气候变化、城市化、变化监测等的研究受到关注。未来可以进一步综合多源遥感数据开展交叉学科研究,遥感大数据结合人工智能算法推进智慧地球的建设。

关键词: 遥感文献计量质心模型共词分析关键词集群    
Abstract:

Scientific publications between 2010 and 2019 with remote sensing backgrounds that are indexed by the Science Citation Index and Social Science Citation Index are retrieved from the Web of Science core collection as data sources. With techniques including statistical analysis, co-occurrence matrix and spatial centroid models, the spatial-temporal dynamics, subject distribution and topic hot spots of global remote sensing publications are analyzed. The results show that the authors of global remote sensing research are concentrated in Europe, North America and eastern Asia. During the last decade, the gravity center of both the output and influence of remote sensing publications has a prominent eastward shift. However, the gravity center of publication output show a significantly larger shift distance than the gravity center of publication influence. The top five productive countries including China, the United States, Germany, Italy and the United Kingdom show clear differences in the main interdisciplinary studies. The United States has balanced performance in all the 13 main interdisciplinary categories. China, however, has relatively low output in many interdisciplinary subjects such as astronomy and astrophysics, as well as ecology. There are also differences in the thematic hot spots for the five productive countries. Chinese scholars are concerned about global change and the Qinghai-Tibet Plateau, while American scholars have comprehensively explored the Mars and the Moon with remote sensing technology. In recent years, research on climate change, urbanization and change detection has attracted broad attention. Research on interdisciplinary application can be carried out comprehensively with multi-source remote sensing data. Combining remote sensing big data with artificial intelligence algorithms to promote the construction of a smart earth.

Key words: Remote Sensing    Bibliometric Analysis    Centroid Model    Co-word Analysis    Keywords Cluster
收稿日期: 2021-08-24 出版日期: 2022-04-08
ZTFLH:  TP79  
基金资助: 福建省自然科学基金项目(2021J011022);国家自然科学基金项目(41801393);福建省教育厅项目(科技类)(JAT190600);闽江学院科研启动项目(MJY19023)
通讯作者: 孙玉     E-mail: zhanghy@mju.edu.cn;jade.yusun@outlook.com
作者简介: 张红月(1987-),女,山东聊城人,讲师,主要从事空间科学计量及GIS建模研究。E?mail:zhanghy@mju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张红月
李宜展
陈思明
黄铭瑞
孙玉

引用本文:

张红月,李宜展,陈思明,黄铭瑞,孙玉. 近10 a全球遥感科学研究的时空动态分析[J]. 遥感技术与应用, 2022, 37(1): 45-60.

Hongyue Zhang,Yizhan Li,Siming Chen,Mingrui Huang,Yu Sun. Spatio-temporal Pattern Analysis of Global Remote Sensing Research in Recent 10 Years. Remote Sensing Technology and Application, 2022, 37(1): 45-60.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.1.0045        http://www.rsta.ac.cn/CN/Y2022/V37/I1/45

图1  2010~2019年遥感科学论文发文量拟合和环比增长率曲线
国家年均增长率/%指数增长率/%论文翻番周期/a
中国25.3224.903.07
美国8.848.768.53
澳大利亚15.5914.904.94
西班牙14.7313.845.70
印度10.9610.747.05
英国13.3113.175.64
德国10.9910.826.46
法国9.959.747.81
加拿大9.428.967.56
意大利11.4311.197.24
表1  近10 a全球遥感的前10位主要发文国家的增长率表
国家地区全体作者发文量/篇通讯作者发文量/篇第一作者发文量/篇全体作者发文篇均被引频次(排名) /(次/篇)通讯作者发文篇均被引频次(排名)/(次/篇)第一作者发文篇均被引频次 (排名)/(次/篇)
美国北美洲26 66126 58013 60819.05 (9)19.06 (9)18.19 (5)
中国亚洲26 02926 01321 38111.69 (17)11.69 (17)10.79 (16)
德国欧洲7 6217 5855 46119.97 (6)20.01 (6)17.76 (8)
英国欧洲6 3366 2962 11219.13 (8)19.13 (8)17.46 (9)
意大利欧洲5 7765 7543 82319.36 (7)19.4 (7)16.16 (12)
法国欧洲5 3895 3714 03621.06 (4)21.05 (4)19.08 (3)
加拿大北美洲5 2545 2294 80217.71 (13)17.79 (13)16.32 (11)
澳大利亚大洋洲4 6744 6554 61817.86 (12)17.84 (12)17.84 (6)
印度亚洲4 5944 5844 1629.65 (20)9.65 (20)8.29 (19)
西班牙欧洲4 1404 1302 00818.65 (10)18.64 (10)15.38 (13)
荷兰欧洲3 1803 1681 39723.18 (3)23.3 (3)18.3 (4)
日本亚洲2 7422 7381 99614.59 (14)14.63 (14)11.74 (14)
巴西南美洲2 0032 0001 86012 (15)12.04 (15)11.41 (15)
瑞士欧洲1 9591 94554025.05 (2)25.1 (2)17.83 (7)
韩国亚洲1 8691 8631 31011.71 (16)11.75 (16)9.41 (18)
伊朗亚洲1 5981 5961 2189.68 (19)9.68 (19)9.42 (17)
比利时欧洲1 5591 5521 35320.33 (5)20.42 (5)19.63 (2)
芬兰欧洲1 2901 28698718.32 (11)18.28 (11)16.47 (10)
俄罗斯欧洲1 2521 25173410.42 (18)10.45 (18)4.84 (20)
奥地利欧洲1 2261 2181 13029.3 (1)29.28 (1)28.66 (1)
表2  2010~2019年遥感科学论文前20个高产国家的发文量及篇均被引频次
国家美国中国德国英国法国
/篇/篇/篇/篇/篇
美国\4 7501 2991 4411 235
中国4 750\786848548
英国1 441848744\637
德国1 299786\744648
加拿大1 252914372332269
法国1 235548648637\
意大利907346634614616
澳大利亚888826363472296
西班牙667232433398444
荷兰627438566445361
日本532475201178177
巴西45258132178191
瑞士442130566255275
韩国429164764349
印度37387121138123
比利时354157264225320
奥地利262103376144111
芬兰232127157171103
俄罗斯23176139103137
伊朗115531012733
表3  2010~2019年遥感科学论文主要发文国家合作发文量
图2  2010~2019年遥感科学论文主要发文国家合作关系聚类图谱
图3  2010~2019年全球遥感科学论文的发文量质心迁移(基于第一作者)
年度

X_Change

/km

Y_Change

/km

Length

/km

2010~2011388.80-37.39390.63
2011~2012152.7257.80163.29
2012~2013472.97-75.60479.04
2013~2014716.483.11716.67
2014~2015384.53-29.33385.68
2015~20165.58-29.0829.60
2016~2017345.3139.31347.57
2017~2018252.53-27.31254.01
2018~2019433.45-15.88433.78
表4  2010~2019年遥感科学论文的发文量的质心迁移距离
图4  2010~2019年全球遥感科学论文的影响力质心迁移
年度

X_Change

/km

Y_Change

/km

Length

/km

2010~2011230.24-354.11422.37
2011~2012502.80135.95520.88
2012~2013165.22119.76204.06
2013~2014-41.23-59.4272.33
2014~2015-765.22144.08778.74
2015~2016984.05-298.871028.59
2016~2017-622.99105.49631.90
2017~2018330.52-172.29372.74
2018~2019-128.25168.13211.46
表5  2010~2019年遥感科学论文的影响力质心迁移距离
期刊国家(发文量) /篇期刊

国家(发文量)

/篇

自然及其子刊

美国(135)

英国(51)

德国(43)

法国(31)

瑞士(30)

中国(27)

加拿大(26)

澳大利亚(20)

荷兰(18)

意大利(17)

美国科学院院报

美国(117)

法国(20)

德国(19)

英国(18)

加拿大(12)

中国(12)

荷兰(11)

瑞士(10)

西班牙(9)

澳大利亚(8)

科学及其子刊

美国 (31)

英国(8)

法国(6)

德国(5)

意大利(5)

中国(5)

瑞士(4)

澳大利亚(2)

比利时(2)

巴西(2)

环境遥感

美国(1 881)

中国(682)

法国(444)

英国(400)

德国(392)

加拿大(387)

意大利(314)

澳大利亚(273)

荷兰(255)

西班牙(250)

表6  4个高影响力期刊发文量前10的国家
图5  5个高产国家全球遥感科学论文的主要学科发文相对量指数
图6  全球遥感科学论文中出现频次最高的100个作者关键词聚类图谱
主流主题类别

文档频次

/次

细分主题关键词

土地利用

/土地覆盖

2 713land use, land cover, land use change, land cover change, land cover map, land cover classification, land use classification, urban land cover/land use, land use planning
森林2 090forest inventory, forest structure, forest disturbance, forest management, forest degradation, forest fires, forest monitoring, forest biomass, forest cover, forest height, forest health, forest debris, forest carbon, forest mapping, forest cover change, forest dynamics, Forest change, forest canopy, forest classification, forest transition, forest loss, forest restoration, forest ecosystem, forest above-ground biomass, forest protection, forest decline, forest ecology
土壤2 077soil moisture, soil erosion, soil salinity, soil properties, soil moisture, soil temperature, soil texture, soil water content, soil moisture retrieval, soil organic matter, soil carbon, soil mapping, soil moisture balance, soil salinization, soil contamination, soil fertility, soil spectroscopy, soil roughness, soil respiration, soil degradation, soil evaporation, soil survey, soil seal, soil reflectance, soil heat flux, soil erodibility, soil pollution, soil erosion risk, soil science, soil quality, soil nutrients, soil map, soil erosion risk, soil classification, soil water storage, soil monitoring, soil water deficit, total soil nitrogen, soil moisture mapping, soil hydraulic properties, soil and water conservation, soil-adjusted vegetation index
城市2 066urbanization, urban heat island, urban areas, urban expansion, urban growth, urban planning, urban sprawl, urban remote sensing, urban environment, urban forest, urban ecology, urban climate, urban vegetation, urban morphology, urban development, urban form, urban mapping, urban green space, urban trees, urban landscape, urban agglomeration, urban monitoring, urban sustainability, urban classification, urban agriculture, urban structure, urban pollution, urban impervious surface, urban-rural gradient, urban modeling, urban ecosystems, urban functional zone, urban geography, urban canopy
水和流域1 782water quality, water balance, water stress, water vapor, water resources, water level, watershed, water management, water clarity, watermarking, water resources management, water efficiency, water index, water quality monitoring, water area management, water pollution, water depth, water-leaving radiance, water content, water budget, water productivity, water shortage, water cycle, water cloud model, water body, water color, water storage, water consumption, groundwater level, water surface temperature, water state, water potential, water monitoring, water footprint, water composition, water index, water harvesting water erosion, water column correction, watershed prioritization, watershed delineation
气候1 741climate change, climate variability, climatology, climate data record, climate models, climate warming, climatic factors, climate sensitivity, climate change adaptation, climate factors, climate change mitigation, climate monitoring, climate extremes, climate change initiative, climate records, climate modelling, climate impacts, climate forcing, climate indices, climate feedback, climate change impact
地表1 457land surface albedo, land surface emissivity, land surface model, land surface modeling, land surface phenology, land surface temperature, land surface water index
生物1 384biomass, biodiversity, biomass burning, biomass estimation, biophysical parameters, biogeography, bioenergy, biosensor, biodiversity conservation, biosensors, biogeochemistry, biodiversity monitoring, biometrics, bio-optical model, biomedical monitoring, biotelemetry, biological invasion, biophysical parameter retrieval, Biological soil crust, biomass change
分类1 840classifiers, classifier fusion, classification accuracy, classifier ensemble, classification uncertainty, classification tree, supervised classification, SVM classification, overall classifier, context classification, fuzzy classification, hierarchical classification, multi-class Classification, multi-signal classification, object-oriented classification, comparison after classification, rule-based classification, wishart classifier
1 245carbon balance, carbon budget, carbon cycling, carbon dynamics, carbon density, carbon emission, carbon fluxes, carbon loss, carbon mapping, carbon modeling, carbon monitoring, carbon nanotubes, carbon sink, carbon stocks, carbon storage, carbon use efficiency, carbonate rocks
植被2 002vegetation abundance, vegetation change, vegetation change tracker, vegetation characteristics, vegetation aggregation index, vegetation community, vegetation coverage, vegetation density, vegetation coverage, vegetation dynamics, vegetation pattern, vegetation phenology, vegetation photosynthesis model, vegetation structure, vegetation restoration, vegetation monitoring, vegetation classification, vegetation height, vegetation fraction, vegetation water content, vegetation type, vegetation productivity, vegetation biomass, vegetation degradation
变化监测1 021change detection, change detection analysis, change detection algorithms
表7  2010~2019年遥感科学论文研究主题及作者关键词
国家关键词聚类图谱主要数据源关键词研究方法研究目的/对象
中国

● 红色集群:高分辨率影像、SAR、InSAR及PolSAR

● 绿色集群:高光谱影像、高光谱数据

● 蓝色集群:Landsat8、MODIS、叶面积指数、植被指数

● 红色集群:卷积神经网络、深度学习图像分类、图像融合、图像注册、图像分隔

● 绿色集群:波段选择、降维、分类、特征提取、特征选择、稀疏表达、光谱解混

● 蓝色集群:数据同化、校准、验证

● 红色集群:变化监测、对象监测、舰船监测

● 绿色集群:异常检测、目标检测

● 蓝色集群:全球变化、青藏高原、植被、土壤、降水、干旱、蒸散量、不确定性

美国

● 红色集群:ASTER、MODIS、VIIRS、卫星观测数据

● 绿色集群:GPS、GRACE、InSAR、电离层、微波辐射测量数据、水文数据、微波遥感数据、SAR、SMAP

● 蓝色集群:GEE、Landsat、时间序列数据

● 红色集群:大气校正、校准、验证、光谱学

● 绿色集群:数据同化、建模

● 蓝色集群:随机森林、GIS

● 红色集群:火星、月球、海洋水色、气候、叶绿素、地表温度、降雨、水质、反射率

● 绿色集群:阿拉斯加、北极、海冰、雪、土壤湿度、植被、湿地

● 蓝色集群:精度评估、农业、生物多样性、变化检测、中国、沙漠化、城市化、土地利用/土地覆盖变化

德国

● 红色集群:航空激光扫描、摄影测量、Lidar、UAV、点云

● 绿色集群:ASTER、Landsat/Landsat8、MODIS、RapidEye、Sentinel-2

● 蓝色集群:EnMAP、高光谱、成像光谱、遥感图像、光谱仪、地面激光扫描、

● 红色集群:分类、数据融合、深度学习、特征提取/特征选择、机器学习、面向对象的图像分析、随机森林、图像切割、支持向量机

● 绿色集群:时序分析、叶面积指数、植被指数

● 蓝色集群:植被指数

● 红色集群:变化检测、森林清查、城市地区

● 绿色集群:生物多样性、中亚、蒸散量、地表温度、物候

● 蓝色集群:生物量、森林、草地、精准农业、植被

意大利

● 红色集群:高光谱数据、遥感数据、无线传感网络

● 绿色集群:Landsat8、MODIS、NDVI、Sentinel-2

● 蓝色集群:Cosmo-Skymed、DInSAR、GNSS、GPS、InSAR、SAR、Sentinel-1、雷达干涉测量、地面激光扫描

● 红色集群:分类、聚类、数据融合、深度学习、特征提取、图像分类、机器学习、全色锐化、随机森林、图像分隔、支持向量机

● 绿色集群:大气校正、FAPAR、叶面积指数

● 蓝色集群:绘图

● 红色集群:文化遗产、林业

● 绿色集群:农业、叶绿素a、蒸散量、海洋水色、物候、不确定性、植被、验证

● 蓝色集群:滑坡、意大利、监测、下沉

英国

● 红色集群:GPS、InSAR、SAR、Sentinel-1、Sentinel-2、干涉测量数据、电离层数据

● 绿色集群:大数据、摄影测量数据、UAV、无线传感网、物联网

● 蓝色集群:对地观测、MODIS、SEVIRI、SMOS、卫星遥感

● 红色集群:特征提取、图像分类、图像处理、旋光法、光谱学

● 绿色集群:分类、数据融合、深度学习、地貌学、深度学习

● 蓝色集群:数据同化、辐射转移、叶面积指数

● 红色集群:测高、北极、气候、火星、海冰、雪

● 绿色集群:变化监测、远程监控、温度

● 蓝色集群:地表温度、海表温度、土壤湿度、验证

表8  遥感科学论文的5个高产国家关键词聚类图谱及主题集群
1 Huang Mingrui. Literature analysis of the 34th Asian Conference on remote sensing[J]. Journal of Remote Sensing, 2014, 18(6):1268-1275.
1 黄铭瑞.第34届亚洲遥感会议文献分析[J].遥感学报,2014,18(6):1268-1275.
2 Qiu Junping, Duan Yufeng, Chen Jingquan, et al. The retrospect and prospect of the development of bibliometrics in China[J]. Studies in Science of Science, 2003(2): 143-148.
2 邱均平, 段宇锋, 陈敬全, 等. 我国文献计量学发展的回顾与展望[J]. 科学学研究, 2003(2): 143-148.
3 Ren Hongjuan, Zhang Zhiqiang. The evolution of mapping knowledge domains based on the bibliometrical method[J]. Journal of Intelligence, 2009, 28(12): 86-90.
3 任红娟, 张志强. 基于文献计量的科学知识图谱发展研究[J]. 情报杂志, 2009, 28(12): 86-90.
4 Szomszor M, Pendlebury D, Rogers G. Identifying research fronts in the web of science: from metrics to meaning [R]. Institute for Scientific Information, 2020.
5 Zhang H Y, Huang M R, Qing X L, et al. Bibliometric analysis of global remote sensing research during 2010-2015[J]. ISPRS International Journal of Geo-Information, 2017, 6(11): 12-19. DOI: 10.3390/ijgi6110332 .
doi: 10.3390/ijgi6110332
6 Zhuang Y, Liu X J, Nguyen T, et al. Global remote sensing research trends during 1991-2010: a bibliometric analysis[J]. Scientometrics, 2013, 96(1): 203-219. DOI: 10.1007/s11192-012-0918-z .
doi: 10.1007/s11192-012-0918-z
7 Agapiou A, Lysandrou V. Remote sensing archaeology: tracking and mapping evolution in European scientific literature from 1999 to 2015[J]. Journal of Archaeological Science-Reports,2015,4:192-200.DOI:10.1016/j.jasrep.2015.09.010 .
doi: 10.1016/j.jasrep.2015.09.010
8 Xiang Anqiang. From the bibliometric analysis of the three major archaeological journals to see the development of Chinese scientific and technological archaeology between 1995 and 2005)[J]. Journal of South China Agricultural University(Social Science Edition),2006,4(5):106-116.
8 向安强. 从考古三大刊文献计量分析看中国科技考古十年(1995-2005)发展[J]. 华南农业大学学报(社会科学版),2006,4(5):106-116].
9 Hu K, Qi K L, Guan Q F, et al. A scientometric visualization analysis for night-time light remote sensing research from 1991 to 2016[J]. Remote Sensing,2017,9(8):30. DOI: 10.3390/rs9080802 .
doi: 10.3390/rs9080802
10 Wang Xuemei, Ma Mingguo. Analysis of the development trend of global papers combining the DMSP-OLS nighttime light data[J]. Remote Sensing Technology and Application,2017,32(6):1093-1099.
10 王雪梅, 马明国.关联DMSP-OLS灯光数据的全球发文量态势分析[J]. 遥感技术与应用,2017,32(6):1093-1099.
11 Bai Caiquan, Yi Xing, He Chen. Bibliometric analysis of the application of the nighttime light remote sensing data: a case study of defense meteorological satellite program operational linescan system[J]. Science of Surveying and Mapping,2017,42(8):116-123.
11 白彩全, 易行, 何晨. 夜间灯光遥感数据应用研究的文献计量分析——以美国国防气象卫星计划运行线扫描系统为例[J]. 测绘科学,2017,42(8):116-123.
12 Ma Hanqing, Gao Fen, Huang Xingyu, et al. Bibliometric analysis on the development trend of the water remote sensing research[J]. Remote Sensing Technology and Application,2014,29(6):1089-1094.
12 马瀚青,高峰,黄新宇,等.基于文献计量的水遥感研究发展态势[J]. 遥感技术与应用,2014,29(6):1089-1094.
13 Zhang Y L, Giardino C, Li L H. Water optics and water colour remote sensing[J]. Remote Sensing,2017,9(8):5-20. DOI: 10.3390/rs9080818 .
doi: 10.3390/rs9080818
14 Tang Min, Chen Lingxia. Bibliometric analysis on the development trend of the water remote sensing research[J]. Qinghai Technology, 2020, 27(2): 59-63.
14 汤敏, 陈玲侠. 基于文献计量的水遥感研究发展态势分析[J]. 青海科技, 2020, 27(2): 59-63.
15 Kandus P, Minotti P G, Morandeira N S, et al. Remote sensing of wetlands in South America: status and challenges[J]. International Journal of Remote Sensing, 2018, 39(4): 993-1016.
16 Duan P L, Wang Y Q, Yin P. Remote sensing applications in monitoring of protected areas: a bibliometric analysis[J]. Remote Sensing, 2020, 12(5): 18. DOI: 10.3390/rs12050772 .
doi: 10.3390/rs12050772
17 Appolloni L, Buonocore E, Russo G F, et al. The use of remote sensing for monitoring Posidonia oceanica and Marine protected areas: a systemic review[J]. Ecological Questions, 2020, 31(2): 7-17. DOI: 10.12775/EQ.2020.009 .
doi: 10.12775/EQ.2020.009
18 Pricope N G, Mapes K L, Woodward K D. Remote sensing of human-environment interactions in global change research: a review of advances, challenges and future directions[J]. Remote Sensing,2019,11(23):23. DOI:10.3390/rs11232783 .
doi: 10.3390/rs11232783
19 Qi Yaxiao, Zhang Fei, Wang Yishan. Analysis of research hotspots of remote sensing application on PM2.5 [J]. Journal of Xinjiang University(Natural Science Edition in Chinese and English), 2020, 37(2): 223-233.
19 齐亚霄,张飞,王一山. PM2.5遥感研究热点分析[J]. 新疆大学学报(自然科学版)(中英文), 2020, 37(2): 223-233.
20 Topp S N, Pavelsky T M, Jensen D, et al. Research trends in the use of remote sensing for inland water quality science: moving towards multidisciplinary applications[J].Water, 2020,12(1): 34-47. DOI: 10.3390/w12010169 .
doi: 10.3390/w12010169
21 Cui X T, Guo X Y, Wang Y D, et al. Application of remote sensing to water environmental processes under a changing climate[J] . Journal of Hydrology, 2019, 574:892-902. DOI: 10.1016/j.jhydrol.2019.04.078 .
doi: 10.1016/j.jhydrol.2019.04.078
22 Zeng Jing. Seeing application of remote sensing in research on landslide disaster from SCI papers[J]. Information Research, 2013,(7): 22-25.曾敬. 从SCI文献看遥感在崩滑流灾害研究中的应用[J]. 情报探索. 2013,(7): 22-25.
23 Han Li, Dai Bihui, Wang Qiuhua, et al. Research status and development trend of forest fire remote sensing based on bibliometric analysis[J]. Forest Inventory and Planning, 2020, 45(1): 60-66.
23 韩丽, 戴必辉, 王秋华, 等. 基于文献计量分析的林火遥感研究现状及发展趋势[J]. 林业调查规划, 2020, 45(1): 60-66.
24 Sebastia-Frasquet M T, Aguilar-Maldonado J A, Herrero-Dura I, et al. Advances in the monitoring of algal blooms by remote sensing: a bibliometric analysis[J]. Applied Sciences-Basel, 2020, 10(21): 15-27. DOI: 10.3390/app10217877 .
doi: 10.3390/app10217877
25 Jimenez-Lao R, Aguilar F J, Nemmaoui A, et al. Remote sensing of agricultural greenhouses and plastic-mulched farmland: An analysis of worldwide research[J]. Remote Sensing, 2020, 12(16): 20-31. DOI: 10.3390/rs12162649 .
doi: 10.3390/rs12162649
26 Wang L J, Zhang G M, Wang Z Y, et al. Bibliometric analysis of remote sensing research trend in crop growth monitoring: A case study in china[J]. Remote Sensing, 2019, 11(7): 11-25. DOI: 10.3390/rs11070809 .
doi: 10.3390/rs11070809
27 Ren Ni, Zhou Jiannong, Dai Hongjun, et al. Bibliometric based analysis of researches on information perception and precision agriculture thome and abroad[J]. Information Research, 2017(11):104-133.
27 任妮,周建农,戴红君,等.基于文献计量的国内外信息感知与精细农业研究态势分析[J].情报探索, 2017(11):104-113.
28 Abad-Segura E, Gonzalez-Zamar M D, Vazquez-Cano E, et al. Remote sensing applied in forest management to optimize ecosystem services: Advances in research[J]. Forests, 2020, 11(9): 28-40. DOI: 10.3390/f11090969
doi: 10.3390/f11090969
29 Wu Xuequn, Li Hua, Cui Wenju. Status analysis of forest invertory based on bibliometrics[J]. Forest Resources Management, 2015(1): 168-172.
29 吴雪琼, 李华, 崔文举.基于文献计量的我国森林资源调查现状分析. 林业资源管理, 2015(1): 168-172.
30 Chen Hao, Xu Hui, Zhang Wei, et al. Bibliometrics analysis on carbon emission research in the perspective of remote sensing[J].Standardization of Surveying and Mapping.2021,37(3):48-53.陈浩,许晖,张伟,等.遥感视角下碳排放文献计量分析[J].测绘标准化,2021,37(3):48-53.
31 Jiang Lu, Yu Jing. Bibliometric analysis of remote sensing research literature of my country's coastal zone based on cite-Space[C]∥ Proceedings of the 2020 Science and Technology Annual Meeting of the Chinese Society for Environmental Sciences, Nanjing, Jiangsu, China, 2020, 6.
31 姜璐, 余静. 基于CiteSpace的我国海岸带遥感研究文献计量分析[C]∥2020中国环境科学学会科学技术年会, 中国江苏南京,2020,6.
32 Zheng Haipeng, Yan Jianzhong, Liu Linshan, et al. Research advances in grassland remote sensing base on bibliometrology[J]. Chinese Journal of Grassland, 2017,39(4):101-110.
32 郑海朋, 阎建忠, 刘林山,等. 基于文献计量的草地遥感研究进展[J]. 中国草地学报,2017,39(4):101-110.
33 Yang Dong, Yang Xiuchun, Jin Yunxiang, et al. Evaluating the research status quo around remote sensing-mediated monitoring of grassland biomass based on bibliometrology[J]. Pratacultural Science,2021,38(9):1782-1792.
33 杨东,杨秀春,金云翔,等.基于文献计量的草地生物量遥感监测研究进展[J].草业科学,2021,38(9):1782-1792.
34 An Peijun, Xiao Xiantao, Guo Huadong, et al. Big earth data research topic dvolution and influence analysis[J]. Bulletin of Chinese Academy of Sciences, 2021,36(8):973-988.
34 安培浚,肖仙桃,郭华东,等.地球科学大数据研究主题演化与影响力分析[J].中国科学院院刊,2021,36(8):973-988.
35 Li Li, Zhang Zhiqiang, An Peijun. Develop trend of remote sensors based on co-word analysis[J]. Remote Sensing Technology and Application, 2010, 25(3): 442-450.
35 李栎, 张志强, 安培浚. 基于共词分析的国际遥感传感器研究发展态势分析[J]. 遥感技术与应用, 2010, 25(3): 442-450.
36 Li Yizhan, Li Zexia, Liu Xiwen, et al. Application analysis of remote sensing data based on remote sensing of environment[J]. Remote Sensing Technology and Application, 2020, 35(1): 1-12.
36 李宜展,李泽霞,刘细文,等.遥感科学数据应用态势分析——以《Remote Sensing of Environment》期刊为例[J].遥感技术与应用,2020,35(1):1-12.
37 Frenken, K, Hardeman, S, Hoekman J. Spatial scientometrics:Towards a cumulative research program[J]. Journal of Informetrics,2009,3(3):222-232.DOI:10.1016/j.joi.2009.03.005 .
doi: 10.1016/j.joi.2009.03.005
38 Bornmann L, de Moya-Anegon F. Spatial bibliometrics on the city level[J]. Journal of Information Science, 2019, 45(3): 416-425.
39 Csomos G. On the challenges ahead of spatial scientometrics focusing on the city level[J]. Aslib Journal of Information Management, 2019, 72(1): 67-87.
40 Wang Xuemei, Li Xin, Zhang Zhiqiang, et al. Spatial display of bibliometric indicators using geographic information system[J]. Library and Information Service,2014,58(3):72-77.
40 王雪梅, 李新, 张志强,等. 文献计量指标的GIS空间展现[J]. 图书情报工作,2014,58(3):72-77.
41 Wang X M, Ma M G, Li X, et al. Applications and researches of geographic information system technologies in bibliometrics[J]. Earth Science Informatics, 2014,3(7):147-152. DOI: 10.1007/s12145-013-0132-4 .
doi: 10.1007/s12145-013-0132-4
42 Ai Xin, Ma Mingguo, Wang Xuemei, et al. A visual analysis of global geoscience research[J]. Advances in Earth Science, 2020, 35(12): 1270-1280.
42 艾鑫,马明国,王雪梅,匡鸿海. 全球地球科学研究的可视化分析[J].地球科学进展, 2020, 35(12):1270-1280.
43 Yang Mai, Wang Xuemei. A bibliometric analysis of world libraries’ paper based on GIS[J]. Remote Sensing Technology and Application, 2015, 30(4): 819-824.
43 杨麦, 王雪梅. 基于GIS的图书馆文献计量分析[J]. 遥感技术与应用, 2015, 30(4): 819-824.
44 Liu C L, Gui Q C. Mapping intellectual structures and dynamics of transport geography research: A scientometric overview from 1982 to 2014[J]. Scientometrics,2016,109(1):159-184.
45 van Eck N J, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010,84(2):523-538.
46 Hu X, Rousseau R. A comparative study of the difference in research performance in biomedical fields among selected Western and Asian countries[J]. Scientometrics,2009,81(2):475-491. DOI:https:
doi: https:
[1] 郭擎,朱丽娅,李安,顾铃燕. 基于NDVI变化检测的滑坡遥感精细识别[J]. 遥感技术与应用, 2022, 37(1): 17-23.
[2] 王茜,宋开山,毛德华,焉恒琦,谭晓宇,王宗明. 1980~2018朝鲜半岛西海岸滨海湿地演化分析[J]. 遥感技术与应用, 2022, 37(1): 108-116.
[3] 杨凤珠,王震山,张乾,孙善磊,柳艺博. 多源日光诱导叶绿素荧光产品在中国地区的一致性研究[J]. 遥感技术与应用, 2022, 37(1): 125-136.
[4] 赵天玮,朱文彬,裴亮,宝康妮. 三江源蒸散发遥感估算及其时空分布特征研究[J]. 遥感技术与应用, 2022, 37(1): 137-147.
[5] 赵辉,王泽根,雷光斌,边金虎,李爱农. 缅甸土地覆被遥感制图和空间格局分析[J]. 遥感技术与应用, 2022, 37(1): 148-160.
[6] 黄耀欢,熊标,杨海军,伍程斌,朱海涛. 入河排污口遥感排查进展评述[J]. 遥感技术与应用, 2022, 37(1): 24-33.
[7] 李翔华,黄春林,侯金亮,韩伟孝,冯娅娅,陈彦四,王静. 结合遥感和统计数据的家畜分布网格化方法研究[J]. 遥感技术与应用, 2022, 37(1): 262-271.
[8] 张欢,李弘毅,李浩杰,车涛. 基于机载LiDAR的高寒山区遥感高程数据精度评估[J]. 遥感技术与应用, 2021, 36(6): 1311-1320.
[9] 尹芳,封凯,吴朦朦,拜得珍,王蕊,周园园,尹春涛,尹翠景,刘磊. 一种基于分段偏最小二乘模型的土壤重金属遥感反演方法[J]. 遥感技术与应用, 2021, 36(6): 1321-1328.
[10] 李杰,贾坤,张宁,魏香琴,王冰. 基于遥感与生态服务模型的青岛市生态保护重要性评价[J]. 遥感技术与应用, 2021, 36(6): 1329-1338.
[11] 陈喆,董庆,陈建平,赵文博,蒋良文,张广泽,冯涛,王栋,毕晓佳,边民,张权平,孟德利. 基于热红外遥感的川藏铁路昌都—林芝段地热异常区定量预测评价研究[J]. 遥感技术与应用, 2021, 36(6): 1368-1378.
[12] 梁立锋,谭本华,马咏珊,陈漾漾,刘秀娟. 基于多源地理大数据的城市空间结构研究[J]. 遥感技术与应用, 2021, 36(6): 1446-1456.
[13] 王昀琛,黄春林,冯娅娅,顾娟. 基于2030可持续发展目标的珠三角土地消耗率与人口增长率协调关系评价[J]. 遥感技术与应用, 2021, 36(5): 1168-1177.
[14] 李益敏,王东驰,刘心知,袁静,赵志芳. 中缅边境典型城市扩张遥感动态监测及驱动力分析[J]. 遥感技术与应用, 2021, 36(5): 1155-1167.
[15] 魏雪馨,刘洋,闵庆文,刘荣高,张清洋,叶晓星,刘蓓蓓. 基于地物光谱季节曲线特征的毛竹林分布提取[J]. 遥感技术与应用, 2021, 36(5): 1178-1188.