Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (1): 85-93    DOI: 10.11873/j.issn.1004-0323.2022.1.0085
青促会十周年专栏     
TSEB模型在复杂下垫面下模拟结果比较研究
徐艳豪(),丁忠昊,宋立生()
西南大学 地理科学学院,重庆 400715
Comparative Study of Simulation Results of TSEB Model under Various Landcovers and Environment Conditions
Yanhao Xu(),Zhonghao Ding,Lisheng Song()
School of Geographical Sciences,Southwest University,Chongqing 400715,China
 全文: PDF(2896 KB)  
摘要:

地表蒸散发对干旱半干旱地区水文过程模拟以及水文平衡有重要影响,复杂地表更是对地表蒸散发模拟提出了新的挑战。利用TSEB(Two-Source Energy Balance)模型,分别以Landsat、MODIS卫星数据为驱动数据,得到黑河下游绿洲地表蒸散发时空分布格局,并利用大孔径闪烁仪和涡动相关仪的观测数据对模拟结果分别在公里级和百米级尺度进行验证,研究结果表明:在大孔径闪烁仪观测的公里级尺度下,基于Landsat数据和MODIS数据驱动的TSEB估算感热通量与大孔径闪烁仪观测数据比较的均方根误差分别为48.47 W/m2、58.57 W/m2。基于涡动相关仪观测百米级尺度,Landsat数据驱动的TSEB估算感热通量与涡动相关仪观测数据的均方根误差为89.37 W/m2。因此,得出以中高分辨率卫星遥感数据作为驱动数据模型模拟效果更好,LAS观测公里级尺度数据能部分解决遥感地表蒸散发验证空间不匹配问题。

关键词: 蒸散发TSEB模型Landsat和MODIS遥感数据真实性检验    
Abstract:

Land surface evapotranspiration has an important impact on the simulation of earth’s hydrological processes and hydrological balance, especially in the arid and semi-arid regions. Where the heterogeneous land surface conditions pose new challenges to the simulation of evapotranspiration using the remote sensing models. In this paper, the satellite data collected from Landsat and MODIS were used as driving data of TSEB model, respectively, to obtain the temporal and spatial distribution pattern of land surface evapotranspiration in the downstream of the Heihe watershed. Then the surface heat fluxes measured by the large aperture scintillator with a source area of several kilometers and the eddy covariance with a source area of several hundred meters were used to evaluate the model outputs at the multiple spatial scales. The results showed that the TSEB estimated surface sensible heat flux using Landsat and MODIS data is comparable with the observations from the large aperture scintillator, with Root Mean Square Error (RMSE)values of 48.47 W/m2 and 58.57W/m2, respectively. While comparing with the observation of eddy covariance, the Landsat data-driven TSEB estimates produced RMSE value of 89.37W/m2. Therefore, it can conclude that the TSEB model has a better agreement with ground measurements when using the finer satellite remote sensing data as model inputs. In addition, large aperture scintillator observation with a source area of several kilometers can partially solve the spatial mismatch issues between the remote sensing products and the ground measurements.

Key words: Evapotranspiration    TSEB model    Landsat and MODIS remote sensing data    Validation
收稿日期: 2020-09-18 出版日期: 2022-04-08
ZTFLH:  P426  
基金资助: 国家自然科学基金项目“耦合土壤水分的土壤蒸发和植被蒸腾遥感估算与验证研究”(42071298);“流域尺度土壤蒸发和植被蒸腾遥感估算与验证研究”(41701377)
通讯作者: 宋立生     E-mail: xuyh168@email.swu.edu.cn;songls@swu.edu.cn
作者简介: 徐艳豪(1997-),女,云南保山人,硕士研究生,主要从事地表蒸散发遥感估算研究。xuyh168@email.swu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐艳豪
丁忠昊
宋立生

引用本文:

徐艳豪,丁忠昊,宋立生. TSEB模型在复杂下垫面下模拟结果比较研究[J]. 遥感技术与应用, 2022, 37(1): 85-93.

Yanhao Xu,Zhonghao Ding,Lisheng Song. Comparative Study of Simulation Results of TSEB Model under Various Landcovers and Environment Conditions. Remote Sensing Technology and Application, 2022, 37(1): 85-93.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.1.0085        http://www.rsta.ac.cn/CN/Y2022/V37/I1/85

1 Jung M, Reichstein M, Ciais P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J].Nature,2010,467(7318):951-954. DOI: 10.1038/nature09396 .
doi: 10.1038/nature09396
2 Seneviratne S I, Corti T, Davin E L, et al. Investigating soil moisture-climate interactions in a changing climate: A review [J]. Earth-Science Reviews, 2010,99(3-4):125-161. DOI: 10.1016/j.earscirev.2010.02.004 .
doi: 10.1016/j.earscirev.2010.02.004
[1] 赵天玮,朱文彬,裴亮,宝康妮. 三江源蒸散发遥感估算及其时空分布特征研究[J]. 遥感技术与应用, 2022, 37(1): 137-147.
[2] 王冰泉,冉有华. 土地覆被遥感产品真实性检验方法对比[J]. 遥感技术与应用, 2022, 37(1): 196-204.
[3] 李佳,辛晓洲,彭志晴,李小军. 地表蒸散发遥感产品比较与分析[J]. 遥感技术与应用, 2021, 36(1): 103-120.
[4] 熊育久,冯房观,方奕舟,邱国玉,赵少华,姚云军. 蒸散发遥感反演产品应用关键问题浅议[J]. 遥感技术与应用, 2021, 36(1): 121-131.
[5] 肖尧,马明国,闻建光,于文凭. 复杂地表地表温度反演研究进展[J]. 遥感技术与应用, 2021, 36(1): 33-43.
[6] 方红亮. 我国叶面积指数卫星遥感产品生产及验证[J]. 遥感技术与应用, 2020, 35(5): 990-1003.
[7] 卢静, 贾立, 郑超磊, 胡光成. 遥感水分收支对区域水资源估算潜能[J]. 遥感技术与应用, 2019, 34(3): 630-638.
[8] 王丽娟,郭铌,王玮,芦亚玲,沙莎. 基于TESEBS模型估算高原地区地表蒸散发[J]. 遥感技术与应用, 2017, 32(3): 507-513.
[9] 赵泽斌,晋 锐,田伟,亢健,苏阳. 基于SiB2模型的土壤水分降尺度指标的适用性研究[J]. 遥感技术与应用, 2017, 32(2): 195-205.
[10] 杨永民,李璐,庞治国,路京选. 基于理论参数空间的遥感蒸散模型构建及验证[J]. 遥感技术与应用, 2016, 31(2): 324-331.
[11] 叶小敏,丁静,丘仲锋,蒋锦刚. 水色水温遥感产品真实性检验误差分析[J]. 遥感技术与应用, 2015, 30(4): 719-724.
[12] 柏军华,肖青,柳钦火,闻建光 . 遥感产品真实性检验靶场构建方法初步研究[J]. 遥感技术与应用, 2015, 30(3): 573-578.
[13] 家淑珍,马明国,于文凭. 黑河中游LAI产品的真实性检验研究[J]. 遥感技术与应用, 2014, 29(6): 1037-1045.
[14] 李琴,陈曦,包安明,徐征和,赵强. 基于SEBS模型干旱区蒸散发量研究[J]. 遥感技术与应用, 2014, 29(2): 195-201.
[15] 叶小敏,林明森,宋庆君. 基于现场观测数据的卫星雷达高度计海面风速和有效波高真实性检验方法研究[J]. 遥感技术与应用, 2014, 29(1): 26-32.