Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (1): 205-217    DOI: 10.11873/j.issn.1004-0323.2022.1.0205
青促会十周年专栏     
基于MODIS数据的河北省草地和林地的物候期及其与NPP相关分析
张晨1,2,3,4(),袁金国1,2,3()
1.河北师范大学 地理科学学院,河北 石家庄 050024
2.河北省环境变化遥感识别技术创新中心,河北 石家庄 050024
3.河北省环境演变与生态建设重点实验室,河北 石家庄 050024
4.唐山市凤凰中学,河北 唐山 063000
Phenological Period of Grassland and Woodland in Hebei Province and Correlation Analysis with Net Primary Productivity (NPP) based on MODIS Data
Chen Zhang1,2,3,4(),Jinguo Yuan1,2,3()
1.School of Geographical Sciences,Hebei Normal University,Shijiazhuang 050024,China
2.Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change,Shijiazhuang 050024,China
3.Laboratory of Environmental Evolution and Ecological Construction in Hebei Province,Shijiazhuang 050024,China
4.Tangshan Fenghuang Middle School,Tangshan 063000,China
 全文: PDF(10390 KB)  
摘要:

通过2006~2016年中等分辨率成像光谱仪MODIS(Moderate Resolution Imaging Spectroradiometer)的MCD12Q2数据集和 NPP (Net Primary Productivity,净初级生产力)数据MOD17A3HGF为数据源,研究河北省的草地和林地的物候期:生长季起始期SOS(Start of Season)、生长季结束期EOS(End of Season)和生长季长度LOS(Length of Season)的多年均值空间分布和多年变化趋势,通过相关分析法研究草地和林地的物候期对NPP的相关关系,并进行显著性检验判断变化趋势和相关系数在α=0.05水平上的显著性。结果表明:河北省草地SOS大多出现在第108~153 d,EOS大多出现在第273~304 d,LOS大多为128~190 d。林地SOS大多出现在第107~128 d,EOS大多出现在第282~306 d,LOS大多为162~194 d。河北省草地和林地的SOS主要呈现出提前趋势,EOS呈现延后趋势,LOS主要呈现增长趋势;草地和林地的物候期与NPP主要呈现中度相关,其中SOS与NPP主要呈现负相关,EOS、LOS与NPP主要呈现正相关。

关键词: 草地林地物候期MODIS数据NPP    
Abstract:

Moderate Resolution Imaging Spectroradiometer (MODIS) MCD12Q2 dataset and MOD17A3HGF NPP (Net Primary productivity) data were used as data sources to study the spatial distribution and change trend of annual mean of phenological period of grassland and woodland in Hebei Province. The phenological period included Start Of growing Season (SOS), End Of growing Season (EOS) and Length Of growing Season (LOS). The correlation between phenological period of grassland and woodland and NPP was studied by correlation analysis method, and the significance of change trend and correlation coefficient at α=0.05 level was judged by significance test. The results showed that SOS of grassland in Hebei Province mostly appeared on 108~153 DOY (day of year), EOS mostly appeared on 273~304DOY, most of LOS was 128~190 days. while SOS of woodland mostly appeared on 107~128 DOY, EOS mostly appeared on 282~306 DOY, most of LOS was 162~194 days. SOS of grassland and woodland in Hebei Province showed early trend, EOS showed delayed trend, and LOS showed growing trend; the phenological period of grassland and woodland was mainly moderately correlated to NPP, and SOS was mainly negatively correlated to NPP, while LOS and EOS were mainly positively correlated to NPP.

Key words: Grassland    Woodland    Phenological period    MODIS data    NPP
收稿日期: 2020-08-25 出版日期: 2022-04-08
ZTFLH:  Q948  
基金资助: 国家重点研发计划项目(2016YFD0801005);河北师范大学重点基金(130539);河北省高校重点学科建设项目
通讯作者: 袁金国     E-mail: zhangchen721@foxmail.com;yuanjinguo8@163.com
作者简介: 张晨(1995-),男,河北唐山人,硕士研究生,主要从事遥感应用研究。E?mail:zhangchen721@foxmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张晨
袁金国

引用本文:

张晨,袁金国. 基于MODIS数据的河北省草地和林地的物候期及其与NPP相关分析[J]. 遥感技术与应用, 2022, 37(1): 205-217.

Chen Zhang,Jinguo Yuan. Phenological Period of Grassland and Woodland in Hebei Province and Correlation Analysis with Net Primary Productivity (NPP) based on MODIS Data. Remote Sensing Technology and Application, 2022, 37(1): 205-217.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.1.0205        http://www.rsta.ac.cn/CN/Y2022/V37/I1/205

1 Zhu Kezhen, Wan Minwei. Phenology[M]. Beijing:Science Press,1973.
1 竺可桢,宛敏渭.物候学[M].北京:科学出版社,1973.
2 Richardson A R, Anderson R S, Arain M A,et al. Terrestrial biosphere models need better representation of vegetation phenology:results from the North American Carbon Program Site Synthesis[J]. Global Change Biology,2012,18(2):566-584. DOI: 10.1111/j.1365-2486.2011.02562.x .
doi: 10.1111/j.1365-2486.2011.02562.x
3 Xu Bo. Effects of global warming on plant phenology[J]. Popular Science & Technology,2018,20(9):22-25.
3 徐波. 全球变暖对植物物候的影响[J]. 大众科技,2018,20(9):22-25.
4 Chmielewski F M, Rtzer T. Response of tree phenology to climate change across europe[J]. Agricultural and Forest Meteorology,2001,108(2):101-112. DOI: 10.1016/S0168-1923(01)00233-7 .
doi: 10.1016/S0168-1923(01)00233-7
5 Yu H Y, Luedeling E, Xu J C. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(51):22151-22156. DOI: 10.1073/pnas.1012490107 .
doi: 10.1073/pnas.1012490107
6 Wang Dongni, Tang Xiaoling, Lian Yi,et al. Response of phenology of three typical deciduous trees to climate warming——take Changbai Mountains as an example[J]. Journal of Northeast Forestry University,2020,48(9):51-55.
6 王冬妮,唐晓玲,廉毅,等. 气候增暖对3种典型落叶乔木物候的影响——以长白山区为例[J]. 东北林业大学学报,2020,48(9):51-55.
7 Cong N, Wang T, Nan H J,et al. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in china from 1982 to 2010:A multimethod analysis[J]. Global Change Biology,2013,19(3):881-891. DOI: 10.1111/gcb.12077 .
doi: 10.1111/gcb.12077
8 Li Xiaodong, Zeng Faliang, Jiang Qigang,et al. Remote sensing monitoring of vegetation phenology information in Northeast China from 1999 to 2013[J]. Journal of Natural Resources,2017,32(2):321-328.
8 李晓东,曾发梁,姜琦刚,等. 1999~2013年中国东北植被物候信息遥感监测[J]. 自然资源学报,2017,32(2):321-328.
9 Fisher J I, Mustard J F. Cross-scalar satellite phenology from ground,Landsat,and MODIS data[J]. Remote Sensing of Environment,2007,109(3):261-273. DOI:10.1016/j.rse. 2007.01.004 .
doi: 10.1016/j.rse. 2007.01.004
10 Fan Deqin, Zhao Xuesheng, Zhu Wenquan,et al. Review of influencing factors of accuracy of plant phenology monitoring based on remote sensing data[J]. Progress in Geography,2016,35(3):304-319.
10 范德芹,赵学胜,朱文泉,等. 植物物候遥感监测精度影响因素研究综述[J].地理科学进展,2016,35(3):304-319.
11 Wang Yingying, Yuan Jinguo, Zhang Ying,et al. Temporal and spatial variation of vegetation phenology in temperate china and its impact on gross primary productivity[J]. Remote Sensing Technology and Application,2019,34(2):377-388.
11 王莹莹,袁金国,张莹,等. 中国温带地区植被物候期时空变化特征及对总初级生产力的影响[J]. 遥感技术与应用,2019,34(2):377-388.
12 Jeong S J, Ho C H, Gim H J,et al. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982~2008[J]. Global Change Biology,2011,17(7):2385-2399. DOI: 10.1111/j.1365-2486.2011.02397.x .
doi: 10.1111/j.1365-2486.2011.02397.x
13 Han Hongzhu, Bai Jianjun, Zhang Bo,et al. Spatial-temporal characteristics of vegetation phenology in Shaanxi Province based on MODIS time series[J]. Remote Sensing for Land & Resources,2018,30(4):125-131.
13 韩红珠,白建军,张波,等.基于MODIS时序的陕西省植被物候时空变化特征分析[J].国土资源遥感,2018,30(4):125-131.
14 Wu C Y, Gonsamo A, Gough C M,et al. Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS[J]. Remote Sensing of Environment,2014,147(18):79-88. DOI: 10.1016/j.rse.2014.03.001 .
doi: 10.1016/j.rse.2014.03.001
15 Lieth H, Whittaker R H. Primary productivity of the biosphere[M]. New York: Springer-Verlad Press,1975.
16 Feng Xianfeng, Liu Gaohuan, Chen Shupeng,et al. Study on process model of net primary productivity of terrestrial ecosystems[J]. Journal of Natural Resources,2004,19(3):369-378.
16 冯险峰,刘高焕,陈述彭,等. 陆地生态系统净第一性生产力过程模型研究综述[J]. 自然资源学报,2004,19(3):369-378.
17 Wu C Y, Hou X Y, Peng D L,et al. Land surface phenology of china's temperate ecosystems over 1999-2013:spatial–temporal patterns,interaction effects,covariation with climate and implications for productivity[J]. Agricultural and Forest Meteorology,2016,216:177-187. DOI:10.1016/j.agrformet. 2015.10.015 .
doi: 10.1016/j.agrformet. 2015.10.015
18 Schwartz M D, Reed B C, White M A. Assessing satellite-derived start-of-season measures in the conterminous USA[J]. International Journal of Climatology,2010,22(14):1793-1805. DOI: 10.1002/joc.819 .
doi: 10.1002/joc.819
19 Wu C Y, Gonsamo A, Chen J M,et al. Interannual and spatial impacts of phenological transitions,growing season length,and spring and autumn temperatures on carbon sequestration:a North America flux data synthesis[J]. Global and Planetary Change,2012,92-93:179-190. DOI:10.1016/j.gloplacha. 2012.05.021 .
doi: 10.1016/j.gloplacha. 2012.05.021
20 Dong Xiaoyu, Yao Huarong, Dai Junhu,et al. Phenological changes of desert steppe vegetation and its effect on net primary productivity in inner Mongolia from 2000 to 2017[J]. Progress in Geography,2020,39(1):24-35.
20 董晓宇,姚华荣,戴君虎,等.2000~2017年内蒙古荒漠草原植被物候变化及对净初级生产力的影响[J]. 地理科学进展,2020,39(1):24-35.
21 Zhang Xuting. Spatial-temporal variation of grassland vegetation dynamics and its response to climate change in China’s temperate zone[D]. Beijing: China Agricultural University,2018.
21 张煦庭. 中国温带地区草地植被动态时空特征及其对气候变化的响应[D].北京: 中国农业大学,2018.
22 Zha Yan, Song Qian, Wei Wei,et al. Spatio-temporal characteristics of cropland phenophase in North China base on NDVI time series data[J]. Chinese Journal of Agricultural Resources and Regional Planning,2017,38(11):1-9.
22 查燕,宋茜,卫炜,等.基于NDVI时序数据的华北地区耕地物候参数时空变化特征[J].中国农业资源与区划,2017,38(11):1-9.
23 Huete A, Didan K, Miura T,et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment.2002,83(1):195-213. DOI: 10.1016/S0034-4257(02)00096-2 .
doi: 10.1016/S0034-4257(02)00096-2
24 Xia Chuanfu, Li Jing, Liu Qinhuo. Review of advances in vegetation phenology monitoring by remote sensing [J]. Journal of Remote Sensing,2013,17(1):1-16.
24 夏传福,李静,柳钦火.植被物候遥感监测研究进展[J].遥感学报,2013,17(1):1-16.
[1] 赵辉,王泽根,雷光斌,边金虎,李爱农. 缅甸土地覆被遥感制图和空间格局分析[J]. 遥感技术与应用, 2022, 37(1): 148-160.
[2] 丁蕾,沈贝贝,刘一良,李振旺,王旭,辛晓平. 基于涡度数据的东北草地光能利用率模型构建与验证[J]. 遥感技术与应用, 2022, 37(1): 231-243.
[3] 张容容,曾靖宇,吴晓萍,周晓桢,任斌裕,唐佳,王前锋. 遥感数据融合下的雄安新区NPP时空格局分析[J]. 遥感技术与应用, 2021, 36(6): 1425-1435.
[4] 周雷雷,郑诗军,尹捷,张雅琼,黄文江,王心源,王岩,张赫林,陈俊杰,彭代亮. 以“胡焕庸线”为界的中国东西部净初级生产力变化分析[J]. 遥感技术与应用, 2021, 36(4): 916-925.
[5] 李桂华,范俊甫,周玉科,张悦. 基于VIIRS夜间灯光数据的山东半岛城市群发展特征研究[J]. 遥感技术与应用, 2020, 35(6): 1348-1359.
[6] 昝骁毓,谭晓悦,李强,陈晋. 融合灯光强度和斑块空间分布特征的贫困区域识别模型构建——以山西省为例[J]. 遥感技术与应用, 2020, 35(6): 1368-1376.
[7] 张少伟,惠刚盈,韩宗涛,孙珊珊,田昕. 基于光学多光谱与SAR遥感特征快速优化的大区域森林地上生物量估测[J]. 遥感技术与应用, 2019, 34(5): 925-938.
[8] 王莹莹, 袁金国, 张莹, 吴朝阳. 中国温带地区植被物候期时空变化特征及对总初级生产力的影响[J]. 遥感技术与应用, 2019, 34(2): 377-388.
[9] 尹思阳, 吴文瑾, 李新武. 基于遥感和气象数据的东南亚森林动态变化分析[J]. 遥感技术与应用, 2019, 34(1): 166-175.
[10] 李长春, 徐轩, 包安明, 刘雪峰, 杨文攀.  基于FY3B-MWRI数据新疆区域积雪深度反演[J]. 遥感技术与应用, 2018, 33(6): 1030-1036.
[11] 张雅,尹小君,王伟强. 基于Landsat 8 OLI遥感影像的天山北坡草地地上生物量估算[J]. 遥感技术与应用, 2017, 32(6): 1012-1021.
[12] 冯艾琳,何洪林,刘利民,任小丽,张黎,葛蓉,赵凤华. 基于多源数据的禹城农田生态系统冬小麦生育期识别方法比较研究[J]. 遥感技术与应用, 2016, 31(5): 958-965.
[13] 周惠慧,付东杰,张立福,王文生,岑奕,王晋年. 基于数字相机的草地物候模拟及其与气象因子关系的研究[J]. 遥感技术与应用, 2016, 31(5): 966-974.
[14] 李兰,陈尔学,李增元,冯琦,赵磊. 合成孔径雷达森林树高和地上生物量估测研究进展[J]. 遥感技术与应用, 2016, 31(4): 625-633.
[15] 管小彬,沈焕锋,甘文霞,张良培. 基于Landsat TM/ETM+影像的武汉市冬季NPP估算及其时空变化分析[J]. 遥感技术与应用, 2015, 30(5): 884-890.