Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (1): 218-230    DOI: 10.11873/j.issn.1004-0323.2022.1.0218
青促会十周年专栏     
辽河口国家级自然保护区湿地时空演变遥感评估
谭月1,2(),杨倩1,贾明明2(),席志成3,王宗明2,毛德华2
1.吉林建筑大学 测绘与勘查工程学院,吉林 长春 130118
2.中国科学院东北地理与农业生态研究所,吉林 长春 130102
3.中国石油集团渤海钻探工程有限公司泥浆技术服务分公司,天津 300280
Remote Sensing Monitoring and Analysis of the Impact of Human Activities on Wetland in Liaohe Estuary National Nature Reserve
Yue Tan1,2(),Qian Yang1,Mingming Jia2(),Zhicheng Xi3,Zongming Wang2,Dehua Mao2
1.Jilin Jianzhu University,School of Geomatics and Prospecing Engineering,Changchun 130118,China
2.Northeast Institute of Geography and Agroecology,Changchun 130102,China
3.Mud Technical Service Branch of China National Petroleum Group Bohai Drilling & Exploration Engineering Co. ,Tianjin 300280,China
 全文: PDF(4990 KB)   HTML
摘要:

以1980年、1990年、2000年、2010年和2020年Landsat遥感影像作为数据源,结合野外实测数据和Google Earth的高分影像,采用面向对象的决策树分类方法,得到1980~2020年辽河口国家级自然保护区土地覆盖变化情况。结合土地利用转移矩阵、景观格局分析法以及等扇方位分析法,研究近40 a辽河口国家级自然保护区内的人工类型用地时空动态演变特征。结果表明:1980~2020年间,研究区内自然湿地减少了270.12 km2,主要转化为耕地、油井、建设用地及交通用地等人工土地覆盖类型。由于受人类活动干扰较大,研究区内景观趋于破碎化、均衡化,景观异质性降低。近40 a来,研究区内人工土地覆盖类型主要沿北西北方向扩张。国家政策和经济发展对辽河口湿地的演变过程影响极大,农田开垦、城镇建设、油田开发和海水养殖等人类活动是自然湿地演变的主要驱动力。

关键词: 辽河口湿地扩张强度空间发展形态演变Landsat    
Abstract:

Using Landsat remote sensing images from 1980, 1990, 2000, 2010 and 2020 as data sources, combined with field measurements and Google Earth's high-resolution images, we obtained the land cover changes of Liaohekou National Nature Reserve from 1980 to 2020 by using the object-oriented decision tree classification method. The spatial and temporal dynamics of the artificial types of land in the Liaohekou National Nature Reserve in the past 40 years were studied by combining the land use transfer matrix, landscape pattern analysis and equal sector orientation analysis. The results show that the natural wetlands in the study area decreased by 270.12 km2 between 1980 and 2020, and were mainly transformed into artificial land cover types such as arable land, oil wells, construction land and transportation land. Due to the large disturbance by human activities, the landscape in the study area tends to be fragmented and balanced, and the landscape heterogeneity is reduced. In the past 40 years, the artificial land cover types in the study area have expanded mainly along the north-northwest direction. National policies and economic factors have greatly influenced the evolution of wetlands in the Liaohe estuary, and human activities such as farmland reclamation, urban construction, oil field development and mariculture are the main driving forces for the evolution of natural wetlands.

Key words: Liaohe Estuary Wetland    Tensile strength    Spatial development    Morphological evolution    Landsat
收稿日期: 2021-06-03 出版日期: 2022-04-08
ZTFLH:  TP79  
基金资助: 国家自然科学基金项目(41801283);中国科学院青年创新促进会项目(2021227);吉林省科技发展计划项目(20200301014RQ);山东省自然科学基金(ZR2020QD020);中国科学院海岸带环境过程与生态修复重点实验室(烟台海岸带研究所)开放基金(2020KFJJ05)
通讯作者: 贾明明     E-mail: tanyue@iga.ac.cn;jiamingming@iga.ac.cn
作者简介: 谭月(1996-),女,吉林集安人,硕士研究生,主要从事湿地生态遥感研究。E?mail:tanyue@iga.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谭月
杨倩
贾明明
席志成
王宗明
毛德华

引用本文:

谭月,杨倩,贾明明,席志成,王宗明,毛德华. 辽河口国家级自然保护区湿地时空演变遥感评估[J]. 遥感技术与应用, 2022, 37(1): 218-230.

Yue Tan,Qian Yang,Mingming Jia,Zhicheng Xi,Zongming Wang,Dehua Mao. Remote Sensing Monitoring and Analysis of the Impact of Human Activities on Wetland in Liaohe Estuary National Nature Reserve. Remote Sensing Technology and Application, 2022, 37(1): 218-230.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.1.0218        http://www.rsta.ac.cn/CN/Y2022/V37/I1/218

图1  研究区地理位置示意图
年份行列号传感器分辨率/m
1980/09/05129/031MSS60
1980/07/22129/032MSS60
1990/09/13120/031TM30
1990/09/13120/032TM30
2000/07/22120/031TM30
2000/07/22120/032TM30
2009/07/15120/031TM30
2010/10/06120/032TM30
2020/06/11120/031OLI30
2020/06/11120/032OLI30
表1  遥感影像列表
Ⅰ级Ⅱ级定义形状
(R:G:B=5:4:3)
自然类型滩涂指沿海高潮位与低潮位之间的海水浸湿地带
沼泽湿地指地表及地表下层土壤经常过度湿润,地表生长着湿性植物和沼泽植物,有泥炭累积或虽无泥炭累积但有潜育层存在的土地,包括芦苇湿地和碱蓬湿地等
自然水面包括天然的浅海水域,河流和水洼地
其他主要指裸地,草地和林地等
人工类型耕地指常年种植农作物的耕地,包括旱地和水田
油井主要指油田用地
水库指人工修建形成的蓄水区
海水养殖池指河流入海口附近及海岸线沿线人工修建或利用自然形成的海水养殖水生生物的池塘
建设用地居民地,除油井以外的其他工业用地等
交通用地包括田间,油井之间的道路
运河/水渠主要指用以沟通地区或水域间水运的人工水道
表2  辽河口国家级自然保护区土地覆盖分类系统
图2  决策树分类树
景观指数英文简写描述
斑块密度PD单位面积上的斑块数,是描述景观破碎化的重要指标。斑块密度越大,破碎化程度越大。
聚集指数AI描述景观内不同斑块类型间的团聚程度或延展趋势。当某一斑块类型的破碎程度达到最大化时,AI等于0,随着聚集程度的不断增加,AI值也不断增加。
景观形状指数LSI通过计算区域内某斑块形状与相同面积的圆或正方形之间的偏离程度来测量其形状复杂程度的。数值越大说明该类型斑块形状越复杂,偏离圆形越远。
香农均度指数SHEI香农多样性指数除以给定景观丰度下的最大可能多样性。SHEI=0表明景观仅由一种拼块组成无多样性;SHEI=1表明各拼块类型均匀分布有最大多样性。
表3  景观指数的选取及定义

土地覆盖

类型

滩涂其他沼泽湿地自然水面耕地油井水库海水养殖池运河/水渠建设用地交通用地
1980年
生产者精度0.810.550.850.810.830.780.85--0.850.71
用户精度0.760.920.880.760.910.850.88--0.820.64
总体精度:0.84;Kappa系数:0.79
1990年
生产者精度0.860.620.890.850.900.810.810.850.740.860.80
用户精度0.790.940.910.820.930.790.750.890.650.790.74
总体精度:0.87;Kappa系数:0.82
2000年
生产者精度0.820.730.910.860.920.830.850.880.760.890.81
用户精度0.780.850.890.890.960.780.830.920.830.900.74
总体精度:0.90;Kappa系数:0.88
2010年
生产者精度0.790.650.890.840.890.840.890.870.790.870.82
用户精度0.830.960.930.910.870.820.800.890.730.890.77
总体精度:0.86;Kappa系数:0.80
2020年
生产者精度0.820.830.920.870.910.850.860.870.800.890.81
用户精度0.790.900.890.920.890.820.890.910.730.810.76
总体精度:0.91;Kappa系数:0.89
表4  1980~2020年辽河口国家级自然保护区土地覆盖类型分类精度和Kappa系数
图3  1980~2020年辽河口国家级自然保护区土地覆盖类型空间分布审图号:GS(2019)3266
土地覆盖类型时间
19801990200020102020
自然类型滩涂293.20109.36137.79118.98112.53
沼泽湿地517.53546.30478.79464.58466.57
自然水面445.87538.77463.35439.64407.40
其他0.320.120.250.260.31
人工类型耕地35.6451.97117.44129.77135.75
油井1.292.955.145.447.03
水库0.652.0017.1715.5913.56
海水养殖池——30.7547.6085.04101.04
运河/水渠——0.021.131.131.44
建设用地12.2922.3523.5328.7736.43
交通用地8.7010.9823.3126.3033.46
表5  1980~2020年辽河口国家级自然保护区土地覆盖类型面积 ( km2)
年份2020
耕地海水养殖池建设用地交通用地水库滩涂油井运河/水渠沼泽湿地自然水面其他

1980

耕地279.1615.456.441.970.220.230.980.3529.230.410.37
海水养殖池8.57130.276.511.930.189.020.190.036.210.48-
建设用地8.693.7560.410.590.200.331.820.1110.840.15-
交通用地1.110.250.3062.870.070.190.330.024.110.030.00
水库0.401.770.210.0529.360.460.01-3.070.07-
滩涂18.6979.847.215.5010.64289.950.680.54131.06115.22-
油井0.410.171.590.450.000.126.510.005.530.03-
运河/水渠0.390.430.050.04--0.001.180.070.11-
沼泽湿地115.0726.4724.8719.866.5046.059.851.111732.9424.460.01
自然水面2.106.033.410.781.14132.290.170.3733.131708.20-
其他0.34-0.000.00----0.05-0.56
表6  1980~2020年辽河口国家级自然保护区土地覆盖类型面积转换矩阵 ( km2)
图4  1980~2020年辽河口国家级自然保护区不同人工土地覆盖类型的扩张速度

土地覆盖

类型

时间
1980~19901990~20002000~20102010~2020
耕地5.0013.001.000.00
油井13.007.001.003.00
水库21.0076.00-1.00-1.00
海水养殖池——5.008.002.00
运河/水渠——633.000.003.00
建设用地8.001.002.003.00
交通用地3.0011.001.003.00
表7  1980~2020年辽河口国家级自然保护区人工土地覆盖类型扩张强度 (%)
图5  辽河口国家级自然保护区人工土地覆盖类型用地扩张形态等扇划分结果
图6  1980~2020年辽河口国家级自然保护区各土地覆盖类型不同景观指数动态变化
图7  盘锦市人口和GDP发展情况
1 Gong P, Niu Z G, Cheng X, et al. China’s wetland change (1990–2000) determined by remote sensing[J]. Science China Earth Sciences, 2010, 53(7): 1036-1042.
2 Mao D, Wang Z, Du B, et al. National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164: 11-25.
3 Xu Dongxia, Zhang Guangxin. Impact of human activities on coastal wetlands in China [J]. Wetland science,2007,5(3):282-288.
3 徐东霞,章光新.人类活动对中国滨海湿地的影响及其保护对策[J].湿地科学,2007,5(3):282-288.
4 Liang Mingxuan. The dynamics of wetland landscape and its driving forces in momoge wetland[D]. Nanchang: Jiangxi Normal University,2020.
4 梁旻轩. 莫莫格湿地景观动态变化及其驱动力分析[D]. 南昌:江西师范大学,2020.
5 Ren L, Yue W, Li J, et al. Impact of economic development on wetlands in Hangzhou Bay Industrial Belt[J]. Journal of Geographical Sciences, 2010, 20(3): 406-416.
6 Liu Y, Sheng L, Liu J. Impact of wetland change on local climate in semi-arid zone of Northeast China[J]. Chinese Geographical Science, 2015, 25(3): 309-320.
7 Xu Caiyao, Pu Lijie, Zhu Ming. Effect of reclamation activity on coastal ecological environment: progress and perspectives[J]. Acta Ecologica Sinica, 2018,38(3):1148-1162.
7 徐彩瑶,濮励杰,朱明.沿海滩涂围垦对生态环境的影响研究进展[J].生态学报,2018,38(3):1148-1162.
8 Gong Ning, Niu Zhenguo, Qi Wei, et al. Driving forces of wetland change in China[J]. Journal of Remote Sensing, 2016,20(2):172-183.
8 宫宁,牛振国,齐伟,等.中国湿地变化的驱动力分析[J].遥感学报,2016,20(2):172-183.
9 Wang Zongming, Song Kaishan, Liu Dianwei, et al. Process of land conversion from marsh into cropland in the Sanjiang Plain during 1954-2005[J]. Wetland Science, 2009,7(3):208-217.
9 王宗明,宋开山,刘殿伟,等.1954~2005年三江平原沼泽湿地农田化过程研究[J].湿地科学,2009,7(3):208-217.
10 Chen Ailian, Zhu Boqin, Chen Liding, et al. Dynamic changes of landscape pattern and eco-disturbance degree in Shuangtai estuary wetland of Liaoning Province, China[J]. Chinese Journal of Applied Ecology, 2010,21(5):1120-1128.
10 陈爱莲,朱博勤,陈利顶,等.双台河口湿地景观及生态干扰度的动态变化[J].应用生态学报,2010,21(5):1120-1128.
11 Li Yanfeng, Mao Dehua, Wang Zongming, et al. Remote sensing retrieval and spatial pattern analysis of Leaf Area Index of phragmites australis in Shuangtai Estuary National Nature Reserve[J]. Wetland science, 2014,12(2):163-169.
11 李延峰,毛德华,王宗明,等.双台河口国家级自然保护区芦苇叶面积指数遥感反演与空间格局分析[J].湿地科学,2014,12(2):163-169.
12 Wan Siang, Liu Xingtu, Mou Xiaojie. Vertical distribution characteristics of carbon and nitrogen contents in soils of 4 types of wetlands in Shuangtai River Estuary[J]. Wetland science, 2017,15(4):629-634.
12 万斯昂,刘兴土,牟晓杰.双台河口四种类型湿地土壤中的碳、氮含量垂直分布特征[J].湿地科学,2017,15(4):629-634.
13 Zhao Quanhua, Hu Guangchen, Li Xiaoli, et al. Full-PolSAR image based on wetland classification and change analysis of the Shuangtai Estuary Wetland[J]. Research of Environmental Sciences,2019,32(2):309-316.
13 赵泉华,胡广臣,李晓丽,等.基于全极化SAR影像的双台河口湿地分类及其变化分析[J].环境科学研究,2019,32(2):309-316.
14 Sun Baodi, Cui Lijuan, Li Wei, et al. Dominant ecosystem services of Shuangtai estuary wetland based on different beneficiaries[J]. Chinese Journal of Ecology,2017,36(1):164-171.
14 孙宝娣,崔丽娟,李伟,等.基于不同受益者的双台河口湿地生态系统主导服务功能[J].生态学杂志,2017,36(1):164-171.
15 Zhang Luoyang, Lei Guoping, Guo Yiyang, et al. Object-oriented land use classification based on landsat images: A case study of the Lower Liaohe Plain[J]. Journal of Basic Science and Engineering,2021,29(2):261-271.
15 张露洋,雷国平,郭一洋,等.基于Landsat影像的面向对象土地利用分类——以下辽河平原为例[J].应用基础与工程科学学报,2021,29(2):261-271.
16 Ma Yanni, Ming Dongping, Yang Haiping. Scale estimation of object-oriented image analysis based on spectral-spatial statistics[J]. National Remote Sensing Bulletin,2017,21(4):566-578.
16 马燕妮,明冬萍,杨海平.面向对象影像多尺度分割最大异质性参数估计[J].遥感学报,2017,21(4):566-578.
17 Pei Huan, Sun Tianjiao, Wang Xiaoyan. Object-oriented land use/cover classification based on texture features of Landsat 8 OLI image[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(2):248-255.
17 裴欢,孙天娇,王晓妍.基于Landsat 8 OLI影像纹理特征的面向对象土地利用/覆盖分类[J].农业工程学报,2018,34(2):248-255.
18 Chen Liping, Sun Yujun. Comparison of object-oriented remote sensing image classification based on different decision trees in forest area[J] Chinese Journal of Applied Ecology,2018,29(12):3995-4003.
18 陈丽萍,孙玉军.基于不同决策树的面向对象林区遥感影像分类比较[J].应用生态学报,2018,29(12):3995-4003.
19 Chen S, Rao P. Land degradation monitoring using multi‐temporal Landsat TM/ETM data in a transition zone between grassland and cropland of northeast China[J]. International Journal of Remote Sensing, 2008, 29(7): 2055-2073.
20 Rao Pinzeng, Wang Yicheng, Wang Fang. Analysis on the NDVI change and influence factors of vegetation cover in the Three-River Headwaters Region[J]. Acta Agrestia Sinica,2021,29(3):572-582.
20 饶品增,王义成,王芳.三江源植被覆盖区NDVI变化及影响因素分析[J].草地学报,2021,29(3):572-582.
21 Zha Y, Gao J, Ni S.Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J]. International journal of remote sensing,2003,24(3):583-594.
22 Yang Zhixiang, He Xiufeng. Automatic extraction of urban land-use information from remote sensing images based on improved NDBI method[J]. Journal of Hohai University(Natural Sciences), 2010,38(2):181-184.
22 杨智翔,何秀凤.基于改进的NDBI指数法的遥感影像城镇用地信息自动提取[J].河海大学学报(自然科学版),2010,38(2):181-184.
23 Yang Shan. On extraction and fractal of urban and rural residential spatial pattern in developed area[J]. Acta Geographica Sinica,2000,55(6):671-678.
23 杨山.发达地区城乡聚落形态的信息提取与分形研究——以无锡市为例[J].地理学报,2000,55(6):671-678.
24 Gu Jiahe, Xue Huazhu, Dong Guotao, et al. Applicability analysis of NDWI for drought monitoring in Henan Province[J]. Agricultural Research in the Arid Areas,2020,38(6):209-217.
24 谷佳贺,薛华柱,董国涛,等.归一化水体指数用于河南省干旱监测适用性分析[J].干旱地区农业研究,2020,38(6):209-217.
25 Xu Hanqiu. A study on information extraction of water body[J]. National Remote Sensing Bulletin, 2005,9(5):589-595.
25 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595.
26 Zha Y, Gao J, Ni S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J]. International Journal of Remote Sensing, 2003, 24(3): 583-594.
27 Guo Zitian, Wang Chunmei, Liu Xin, et al. Accuracy assessment of FROM-GLC30 dataset based on small watershed sampling units in China[J]. Journal of Geo-information Science, 2021,23(3):524-535.
27 郭紫甜,王春梅,刘欣,等.基于小流域抽样单元的中国FROM-GLC30数据精度评价[J].地球信息科学学报,2021,23(3):524-535.
28 Ye Jie, Meng Fanxiao, Bai Weiming, et al. A comparative study on the classification of GF-1 remote sensing images for Zhoukou Urban under the Four Identical condition[J]. Journal of Geo-information Science, 2020,22(10):2088-2097.
28 叶杰,孟凡晓,白潍铭,等.“四同”条件下周口城区高分一号遥感影像分类对比研究[J].地球信息科学学报,2020,22(10):2088-2097.
29 Qian Zhiyou, Fu Haiyue, Wang Yan, et al. Characteristics of urban expansion and morphological evolution in Nanjing from 2004 to 2016[J]. Remote Sensing for Land & Resources, 2019,31(2):149-156.
29 钱志友,符海月,王妍,等.2004~2016年南京市城市扩张及形态演变特征[J].国土资源遥感,2019,31(2):149-156.
30 Li Guangdong, Qi Wei. Impacts of construction land expansion on landscape pattern evolution in China[J]. Acta Geographica Sinica, 2019,74(12):2572-2591.
30 李广东,戚伟.中国建设用地扩张对景观格局演化的影响[J].地理学报,2019,74(12):2572-2591.
31 Lu Chunyan, Wang Zongming, Liu Mingyue, et al. Analysis of conservation effectiveness of wetland protected areas based on remote sensing in West Songnen Plain[J]. China Environmental Science, 2015,35(2):599-609.
31 路春燕,王宗明,刘明月,等.松嫩平原西部湿地自然保护区保护有效性遥感分析[J].中国环境科学,2015,35(2):599-609.
32 Jiao Wenwen. Remote sensing monitoring of dynamic changes of important wetlands in northeast China[D]. Harbin: Harbin Normal University, 2020.
32 焦雯雯. 东北地区重要湿地动态变化遥感监测[D]. 哈尔滨:哈尔滨师范大学,2020.
33 Lu Xiaoning, Huang Yue, Hong Jia, et al. Spatial and temporal variations in wetland landscape patterns in the Yellow River Delta based on Landsat images[J]. China Environmental Science, 2018,38(11):4314-4324.
33 卢晓宁,黄玥,洪佳,曾德裕,杨柳青.基于Landsat的黄河三角洲湿地景观时空格局演变[J].中国环境科学,2018,38(11):4314-4324.
34 Hong Jia, Lu Xiaoning, Wang Lingling. Quantitative analysis of the factors driving evolution in the Yellow River Delta Wetland in the past 40 years[J]. Acta Ecologica Sinica,2016,36(4):924-935.
34 洪佳,卢晓宁,王玲玲.1973—2013年黄河三角洲湿地景观演变驱动力[J].生态学报,2016,36(4):924-935.
[1] 王茜,宋开山,毛德华,焉恒琦,谭晓宇,王宗明. 1980~2018朝鲜半岛西海岸滨海湿地演化分析[J]. 遥感技术与应用, 2022, 37(1): 108-116.
[2] 除多,郑照军,拉巴卓玛,次丹玉珍. 基于Landsat-8 OLI的青藏高原IMS 4 km雪冰产品精度评价[J]. 遥感技术与应用, 2021, 36(6): 1223-1235.
[3] 王曦,张怡雯. 基于Landsat影像的北京植被覆盖度变化趋势分析[J]. 遥感技术与应用, 2021, 36(6): 1388-1397.
[4] 常潇月,荆林海,林沂. 基于机载LiDAR数据和Landsat 8影像的芬兰北部泰加林—苔原过渡带提取[J]. 遥感技术与应用, 2021, 36(6): 1259-1271.
[5] 罗玲,毛德华,张柏,王宗明,杨桄. 芦苇湿地植被NPP估算方法探索与应用[J]. 遥感技术与应用, 2021, 36(4): 742-750.
[6] 陈康明,朱旭东. 基于Google Earth Engine的南方滨海盐沼植被时空演变特征分析[J]. 遥感技术与应用, 2021, 36(4): 751-759.
[7] 姚杰鹏,杨磊库,陈探,宋春桥. 基于Sentinel-1,2和Landsat 8时序影像的鄱阳湖湿地连续变化监测研究[J]. 遥感技术与应用, 2021, 36(4): 760-776.
[8] 吴欢欢,国巧真,臧金龙,乔悦,朱丽,何云海. 基于Landsat 8与实测数据的水质参数反演研究[J]. 遥感技术与应用, 2021, 36(4): 898-907.
[9] 孙景霞,张冬有,侯宇初. 基于多源遥感数据协同反演森林地表土壤水分研究[J]. 遥感技术与应用, 2021, 36(3): 564-570.
[10] 屈炀,袁占良,赵文智,陈学泓,陈家阁. 基于多时序特征和卷积神经网络的农作物分类[J]. 遥感技术与应用, 2021, 36(2): 304-313.
[11] 徐光志,徐涵秋. Sentinel⁃2A MSI 和Landsat 8 OLI两种传感器多光谱信息的交互对比[J]. 遥感技术与应用, 2021, 36(1): 165-175.
[12] 徐艳豪,刘晓龙,史正涛,高书鹏. 热带地区Landsat干季数据的无效像元修复方法研究[J]. 遥感技术与应用, 2020, 35(6): 1394-1403.
[13] 王一帆,徐涵秋. 基于客观阈值与随机森林Gini指标的水体遥感指数对比[J]. 遥感技术与应用, 2020, 35(5): 1089-1098.
[14] 李宏达,高小红,汤敏. 基于CNN的不同空间分辨率影像土地覆被分类研究[J]. 遥感技术与应用, 2020, 35(4): 749-758.
[15] 李超,李雪梅,田亚林,任瑞. 温度植被干旱指数时空融合模型对比[J]. 遥感技术与应用, 2020, 35(4): 832-844.