Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (1): 231-243    DOI: 10.11873/j.issn.1004-0323.2022.1.0231
草地遥感专栏     
基于涡度数据的东北草地光能利用率模型构建与验证
丁蕾1(),沈贝贝1,刘一良2,李振旺3,王旭1,辛晓平1()
1.中国农业科学院农业资源与农业区划研究所/ 呼伦贝尔草原生态系统国家野外科学观测研究站,北京 100081
2.国家遥感中心,北京 100036
3.中国科学院南京土壤研究所,江苏 南京 210008
Constructing and Validating Light Use Efficiency Model of the Grassland in Northeastern China based on Flux Data
Lei Ding1(),Beibei Shen1,Yiliang Liu2,Zhenwang Li3,Xu Wang1,Xiaoping Xin1()
1.National Hulunber Grassland Ecosystem Observation and Research Station / Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences,Beijing 100081,China
2.National Remote Sensing Center of China,Beijing 100036,China
3.Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China
 全文: PDF(6014 KB)   HTML
摘要:

草地作为地球上分布最广的植被类型,在陆地碳循环中发挥着重要作用。草地生产力是估算产草量的基础,准确模拟生产力对草原资源合理利用及生态保护具有重要意义。以东北草地生产力为研究核心,利用涡度相关通量观测数据、遥感数据和气象数据,构建和检验东北草地光能利用率模型。东北草地光能利用率模型以归一化物候植被指数(NDPI)代表光合有效辐射吸收比例,以地表水分指数(LSWI)+ 0.5表示水分胁迫因子。基于44个草原站的通量数据对东北草地光能利用率模型进行验证,东北草地光能利用率模型的R2为0.855,高于MODIS GPP产品(R2=0.719),略高于VPM GPP产品(R2=0.848),东北草地光能利用率模型的MAE和RMSE分别为0.374 gCm-2和0.735 gCm-2,低于MODIS GPP产品(MAE=0.562 gCm-2,RMSE=1.026 gCm-2)和VPM GPP 产品(MAE=0.667 gCm-2,RMSE=1.339 gCm-2)。VPM GPP产品普遍高估了东北草地的GPP;MODIS GPP产品在典型草原干旱年份明显高估涡度总初级生产力(GPP),而在草甸草原却存在明显的低估;东北草地光能利用率模型虽然在典型草原的干旱年份也存在高于涡度GPP的情况,但程度较MODIS GPP产品和VPM GPP产品小。东北草地光能利用率模型不论从模型精度还是动态一致性上,其表现均优于MODIS GPP产品和VPM GPP产品,且年尺度上的拟合精度远高于MODIS GPP产品和VPM GPP产品。水分胁迫和FPAR的改进都是东北草地光能利用率改进模型精度较高的原因,水分胁迫的贡献更大。研究表明使用构建的东北草地光能利用率模型模拟东北草地生产力非常必要。

关键词: 草地光能利用率模型生产力GPP产品    
Abstract:

As the most widely distributed vegetation type on earth, grassland plays an important role in the terrestrial carbon cycle. Grassland productivity is the basis for estimating grassland yield. Grasping the temporal and spatial variation of grassland productivity is of great significance for rational utilization of grassland resources and protection of grassland ecological environment. This thesis taking the productivity of grassland in northeastern China as core, constructing and validating light use efficiency model based on eddy covariance flux data, remote sensing, and climate data, explored the spatiotemporal patterns on this basis. The research results are as follows: in the northeastern China steppe LUE model, FPAR was represented by NDPI, water stress factor was represented by LSWI + 0.5. Based on the flux data of four grassland stations, the R2 of the northeastern China steppe LUE model was 0.855, which was higher than that of MODIS GPP (R2 = 0.719), and slightly higher than VPM GPP (R2 = 0.848). MAE and RMSE of the northeastern China steppe LUE model were 0.374 gCm-2 and 0.735 gCm-2,respectively,which were lower than that of MODIS GPP(MAE=0.562 gCm-2, RMSE = 1.026 gCm-2) and VPM GPP products (MAE = 0.667 gCm-2, RMSE = 1.339 gCm-2). VPM GPP product generally overestimated the flux GPP; MODIS GPP product significantly overestimated typical steppe GPP in dry years, and significantly underestimated meadow steppe GPP. Although the northeastern China steppe LUE model was higher than the typical steppe flux GPP in the dry years, its overestimation degree is less than that of MODIS GPP and VPM GPP products. The northeastern China steppe LUE model is superior to MODIS GPP and VPM GPP products in terms of model accuracy and dynamic consistency, and the fitting accuracy of the annual scale is much higher than MODIS GPP and VPM GPP. The modified of water stress and FPAR was the reason for the improvement of LUE model accuracy, and the relative contribution of water stress is greater. This study demonstrates that it is necessary to use the improved light energy utilization model to simulate grassland productivity in northeastern China.

Key words: Grassland    Light use efficiency model    Productivity    GPP products
收稿日期: 2021-07-13 出版日期: 2022-04-08
ZTFLH:  S812  
基金资助: 国家重点研发计划项目“草地碳收支监测评估技术合作研究”(2017YFE0104500);国家自然科学基金“基于全生命周期分析的多尺度草甸草原经营景观碳收支研究”(41771205);财政部和农业农村部国家现代农业产业技术体系资助;中央级公益性科研院所基本科研业务费专项(Y2020YJ19)
通讯作者: 辛晓平     E-mail: dinglei0206@126.com;xinxiaoping@caas.cn
作者简介: 丁蕾(1991-),女,河北唐山人,博士,主要从事草原生态遥感研究。E?mail:dinglei0206@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
丁蕾
沈贝贝
刘一良
李振旺
王旭
辛晓平

引用本文:

丁蕾,沈贝贝,刘一良,李振旺,王旭,辛晓平. 基于涡度数据的东北草地光能利用率模型构建与验证[J]. 遥感技术与应用, 2022, 37(1): 231-243.

Lei Ding,Beibei Shen,Yiliang Liu,Zhenwang Li,Xu Wang,Xiaoping Xin. Constructing and Validating Light Use Efficiency Model of the Grassland in Northeastern China based on Flux Data. Remote Sensing Technology and Application, 2022, 37(1): 231-243.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.1.0231        http://www.rsta.ac.cn/CN/Y2022/V37/I1/231

图1  研究区地理位置及草地类型分布审图号:GS(2021)7692
站点纬度/°经度/°海拔/m草原类型数据时间来源
锡林郭勒43.55116.681 251典型草原2004~2005年ChinaFLUX
多伦42.05116.281 312典型草原2007~2008年FLUXNET2015
长岭44.59123.51144草甸草原2007~2010年FLUXNET2015
呼伦贝尔49.35120.12664草甸草原2009~2011年ChinaFLUX
表1  通量站基本信息与数据来源
名称时间尺度单位用途
气温每日计算温度胁迫因子
太阳辐射每日Wm-2计算日值光合有效辐射
饱和蒸气压差每日hPa水分胁迫因子比较
土壤含水量每日%水分胁迫因子比较
潜热通量每日Wm-2计算蒸发分数
显热通量每日Wm-2计算蒸发分数
总初级生产力每日gCm-2d-1模型优化及验证
表2  使用的通量站采集的数据及用途
图2  植被指数与涡度GPP相关性分析
站点年份年均气温/℃年降水量/mm气候状况
锡林郭勒20041.76364正常
20050.70153干旱
2000~20181.93378
多伦20073.55208干旱
20082.58362正常
2000~20183.08378
长岭20077.15210干旱
20086.72384正常
20095.40282干旱
20104.91283干旱
2000~20186.48398
呼伦贝尔2009-1.56430正常
2010-1.63335干旱
2011-1.83398正常
2000~2018-0.86388
表3  通量站各年份气候状况
图3  通量站气候正常年份8天气温与GPP关系图
图4  东北草地通量站水分胁迫参数与GPP相关性矩阵
产品名称FPAR温度胁迫水分胁迫εmax
东北草地光能利用率NDPITmin Topt TmaxLSWI+0.52.14 gCMJ-1
MODIS GPPMODIS FPARTminVPD0.860 gCMJ-1
VPM GPPEVITmin Topt TmaxLSWImax米氏方程拟合
表4  GPP产品使用参数
图5  模拟与涡度GPP散点图:(a-e)为东北草地光能利用率模型,(f-j)为MODIS GPP产品,(k-o)为VPM GPP产品
图6  模拟GPP与涡度GPP动态折线图
图7  GPP产品多时间尺度验证散点图:(a-c)为东北草地光能利用率模型,(d-f)为MODIS GPP产品,(g-i)为VPM GPP产品
时间尺度产品R2MAERMSE
8 d东北草地光能利用率0.8550.3770.738
MODIS GPP0.7190.5691.026
VPM GPP0.8480.6671.339
东北草地光能利用率0.8980.3410.633
MODIS GPP0.7380.5560.979
VPM GPP0.8620.6541.266
东北草地光能利用率0.7861.1271.414
MODIS GPP0.0541.2191.448
VPM GPP0.5711.3821.491
表5  GPP产品多时间尺度验证结果
图8  不同气候状况下模型精度分析
1 Lin H L, Feng Q S, Liang T G,et al. Modelling global-scale potential grassland changes in spatio-temporal patterns to global climate change[J]. International Journal of Sustainable Development & World Ecology,2013,20(1):83-96.
2 Department of Animal Husbandry and Veterinary, Ministry of Agriculture, PRC.Grassland Resources in China[M]. Beijing: China Agricultural Science and Technology Press, 1996.
2 中华人民共和国农业部畜牧兽医司. 中国草地资源[M]. 北京: 中国农业科学技术出版社, 1996.
3 Wu Jinghua. Study on grassland degeneration in China[J]. Ecological Economy,1995,11(5):1-6.
3 吴精华. 中国草原退化的分析及其防治对策[J]. 生态经济, 1995,11(5):1-6.
4 Xie Gaodi, Zhang Yili, Lu Chunxia, et al. Study on valuation of rangeland ecosystem services of China[J]. Journal of Natural Resources, 2001, 16(1): 47-53.
4 谢高地, 张钇锂, 鲁春霞, 等. 中国自然草地生态系统服务价值[J]. 自然资源学报, 2001, 16(1): 47-53.
5 Zou Yarong, Zhang Zengxiang, Zhao Xiaoli, et al. Analysis of grassland resource dynamics in China, arid region supported by RS and GIS[J]. Research of Environmental Sciences,2003,16(1):19-26.
5 邹亚荣,张增祥,赵晓丽,等. GIS支持下我国干旱区草地资源动态分析[J]. 环境科学研究,2003,16(1):19-26.
6 State Environmental Protection Administration.China Environmental Status Bulletin[R], 2005.国家环境保护总局. 中国环境状况公报[R], 2005.
7 Bai Yongfei, Zhao Yujie, Wang Yang, et al. Assessment of ecosystem services and ecological regionalization of grasslands support establishment of ecological security barriers in northern China[J]. Bulletin of the Chinese Academy of Sciences, 2020,35(6):675-689.
7 白永飞, 赵玉金, 王扬, 等. 中国北方草地生态系统服务评估和功能区划助力生态安全屏障建设[J]. 中国科学院院刊, 2020,35(6):675-689.
8 Liu J, Chen J M, Cihlar J, et al. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data[J]. Journal of Geophysical Research Atmospheres, 1999, 104(D22): 27735-27754.
9 Zhang Meiling, Jiang Wenlan, Chen Quangong, et al. Research progress in the estimation models of grassland net primary productivity[J]. Acta Agrestia Sinica, 2011,19(2):356-366.
9 张美玲, 蒋文兰, 陈全功, 等. 草地净第一性生产力估算模型研究进展[J]. 草地学报, 2011,19(2):356-366.
10 Monteith J L. Solar Radiation and productivity in tropical ecosystems[J]. Journal of Applied Ecology,1972,9(3):747-766.
11 Monteith J L, Moss C J. Climate and the efficiency of crop production in Britain[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1977, 281(980): 277-294.
12 Prince S D, Goward S N. Global primary production: A remote sensing approach[J]. Journal of Biogeography, 1995, 22(4/5): 815-835.
13 Xiao X M, Hollinger D, Aber J, et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest[J]. Remote Sensing of Environment, 2004, 89(4): 519-534.
14 Veroustraete F, Sabbe H, Eerens H. Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data[J]. Remote Sensing of Environment, 2002, 83(3): 376-399.
15 Turner D P, Ritts W D, Styles J M, et al. A diagnostic carbon flux model to monitor the effects of disturbance and interannual variation in climate on regional NEP[J]. Tellus B: Chemical and Physical Meteorology, 2006, 58(5): 476-490.
16 Running S W, Thornton P E, Nemani R, et al. Global terrestrial gross and net primary productivity from the earth observing system[M]. Methods in Ecosystem Science,2000:44-57.
17 Yuan W P, Liu S G, Zhou G S, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes[J]. Agricultural and Forest Meteorology, 2007, 143(3-4): 189-207.
18 Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production: A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 1993, 7(4): 811–841.
19 Gower S T, Kucharik C J, Norman J M. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems[J]. Remote Sensing of Environment, 1999, 70(1): 29-51.
20 Gao B C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3): 257-266.
21 Schell J A. Monitoring vegetation systems in the great plains with ERTS[J]. Nasa Special Publication, 1973, 351:309.
22 Huete A R, Liu H Q, Batchily K,et al. A comparison of vegeta-tion indices over a global set of TM images for EOS-MODIS[J]. Remote Sensing of Environment,1997,59(3):440-451.
23 Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002, 83(1-2):195-213.
24 Wang C, Chen J, Wu J, et al. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems[J]. Remote Sensing of Environment, 2017, 196: 1-12.
25 Gan L Q, Cao X, Chen J, et al. Comparison of winter wheat spring phenology extraction by various remote sensing vegetation indices and methods[M]. IEEE International Geoscience and Remote Sensing Symposium,2019:6302-6305.
26 Gan L Q, Cao X, Chen X H, et al. Comparison of MODIS-based vegetation indices and methods for winter wheat green-up date detection in Huanghuai region of China[J]. Agricultural and Forest Meteorology, 2020,288-289:108019. DOI:10.1016/j.agrformet.2020.108019 .
doi: 10.1016/j.agrformet.2020.108019
27 Huang K, Zhang Y J, Tagesson T, et al. The confounding effect of snow cover on assessing spring phenology from space: A new look at trends on the Tibetan Plateau[J]. Science of the Total Environment,2021:756. DOI:10.1016/j.scitotenv.2020.144011 .
doi: 10.1016/j.scitotenv.2020.144011
28 Chen X H, Guo Z F, Chen J, et al. Replacing the red band with the Red-SWIR band (0.74(red)+0.26(swir)) can reduce the sensitivity of vegetation indices to soil background[J]. Remote Sensing,2019,11(7):1-15.
29 Xu D W, Wang C, Chen J, et al. The superiority of the Normalized Difference Phenology Index (NDPI) for estimating grassland aboveground fresh biomass[J]. Remote Sensing of Environment,2021,264:112578. DOI:10.1016/J.RSE.2021. 112578 .
doi: 10.1016/J.RSE.2021. 112578
30 Yuan W P, Cai W W, Xia J Z, et al. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database[J]. Agricultural and Forest Meteorology,2014,192-193:108-20.
31 Feng Yiming, Yao Aidong, Jiang Lina. Improving the CASA model and applying it to estimate the net primary productivity of arid region ecology system.[J]. Journal of Arid Land Resources and Environment, 2014, 28(8):39-43.
31 冯益明,姚爱冬,姜丽娜.CASA模型的改进及在干旱区生态系统NPP估算中的应用[J]. 干旱区资源与环境, 2014, 28(8):39-43.
32 Zhang Meiling, Jiang Wenlan, Chen Quangong, et al. Use improved CASA model to estimate the maximum light use efficiency of of class in grassland comprehensive and sequential classification system[J]. Grassland and Turf, 2012, 32(4):60-66.
32 张美玲,蒋文兰,陈全功,等. 基于改进的CASA模型模拟草原综合顺序分类体系各类的最大光能利用率[J]. 草原与草坪, 2012, 32(4):60-66.
33 Wang H, Li X, Ma M, et al. Improving estimation of gross primary production in dryland ecosystems by a model-data fusion approach[J]. Remote Sensing,2019,11(3):225. DOI:10.3390/rs11030225 .
doi: 10.3390/rs11030225
34 He H L, Xiao X M, Ren X L, et al. Large-scale estimation and uncertainty analysis of gross primary production in Tibetan alpine grasslands[J]. Journal of Geophysical Research: Biogeosciences,2013,119(3):466-486. DOI:10.1002/2013JG 002449 .
doi: 10.1002/2013JG 002449
35 Zheng Yi. Light use efficiency based gross primary productivity estimation and uncertainty analysis[D]. Beijing: The University of Chinese Academy of Sciences, 2017.
35 郑艺. 基于光能利用率模型的植被总初级生产力估算及其不确定性分析[D]. 北京: 中国科学院, 2017.
36 Madani N, Kimball J S, Running S W, et al. Improving global gross primary productivity estimates by computing optimum light use efficiencies using flux tower data[J]. Journal of Geophysical Research: Biogeosciences, 2017. DOI:10.1002/2017JG004142 .
doi: 10.1002/2017JG004142
37 Lian Xiaomei. Opening Practice during the process of revitalization in Northeast China: General strategy and countermeasures[J]. Northeast Asia Forum, 2007,16(5):34-37.
37 廉晓梅. 东北振兴过程中的对外开放:总体思路与对策[J]. 东北亚论坛, 2007,16(5):34-37.
38 Mao Dehua, Wang Zongming, Han Jixing, et al. Spatio-temporal pattern of net primary productivity and its driven factors in Northeast China in 1982~2010[J]. Chinese Geographical Science, 2012, 32(9): 1106-1111.
38 毛德华, 王宗明, 韩佶兴, 等. 1982~2010年中国东北地区植被NPP时空格局及驱动因子分析[J]. 地理科学,2012,32(9):1106-1111.
39 Tang Huan, Li Zhenwang, Ding Lei, et al. Validation of GPP remote sensing products using eddy covariance flux observations in the grassland area of China[J]. Pratacultural Science, 2018, 35 (11): 2568-2583.
39 唐欢, 李振旺, 丁蕾,等. 基于地面涡度数据的中国草原区 GPP遥感产品验证[J]. 草业科学, 2018, 35(11):2568-2583.
40 Vermote E, Kotchenova S Y, Ray J P. MODIS surface reflectance user's guide collection 6 [S]. Version 1.4, 2015, 11-40.
41 Gao B C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3): 257-266. DOI: 10.1016/S0034-4257(96)00067-3 .
doi: 10.1016/S0034-4257(96)00067-3
42 Wang C, Chen J, Wu J, et al. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems[J]. Remote Sensing of Environment, 2017, 196: 1-12. DOI: 10.1016/j.rse.2017.04.031 .
doi: 10.1016/j.rse.2017.04.031
43 Moncrieff J B, Malhi Y, Leuning R.The propagation of errors in long‐term measurements of land‐atmosphere fluxes of carbon and water[J]. Global Change Biology,1996,2(3):231-240.
[1] 赵辉,王泽根,雷光斌,边金虎,李爱农. 缅甸土地覆被遥感制图和空间格局分析[J]. 遥感技术与应用, 2022, 37(1): 148-160.
[2] 张晨,袁金国. 基于MODIS数据的河北省草地和林地的物候期及其与NPP相关分析[J]. 遥感技术与应用, 2022, 37(1): 205-217.
[3] 罗玲,毛德华,张柏,王宗明,杨桄. 芦苇湿地植被NPP估算方法探索与应用[J]. 遥感技术与应用, 2021, 36(4): 742-750.
[4] 刘莹,朱秀芳,徐昆,陈令仪,郭锐. 干旱对灌溉和雨养农田生态系统生产力的影响对比分析[J]. 遥感技术与应用, 2021, 36(2): 381-390.
[5] 杨昊翔,张丽,闫敏,林光辉. 基于高时空分辨率融合影像的红树林总初级生产力遥感估算[J]. 遥感技术与应用, 2021, 36(2): 453-462.
[6] 王华,周玉科,王笑影,周成虎. 东北植被生长峰值特征的变化及对气候和物候的响应[J]. 遥感技术与应用, 2021, 36(2): 441-452.
[7] 侯吉宇,周艳莲,刘洋. 不同叶面积指数遥感数据模拟中国总初级生产力的时空差异[J]. 遥感技术与应用, 2020, 35(5): 1015-1027.
[8] 王雅楠,韦瑾,汤旭光,韩旭军,马明国. 应用叶绿素荧光估算植被总初级生产力研究进展[J]. 遥感技术与应用, 2020, 35(5): 975-989.
[9] 刘婵,刘冰,赵文智,朱钊岑,司瑞. 中亚地区植被净初级生产力时空动态及其与气候因子关系[J]. 遥感技术与应用, 2020, 35(4): 924-933.
[10] 冯艾琳,武晋雯,孟莹,姜鹏,董巍,张璇,方缘,刘斌. 基于MODIS GPP数据产品的辽宁省碳源/汇空间格局分布研究[J]. 遥感技术与应用, 2019, 34(4): 857-864.
[11] 王莹莹, 袁金国, 张莹, 吴朝阳. 中国温带地区植被物候期时空变化特征及对总初级生产力的影响[J]. 遥感技术与应用, 2019, 34(2): 377-388.
[12] 李长春, 徐轩, 包安明, 刘雪峰, 杨文攀.  基于FY3B-MWRI数据新疆区域积雪深度反演[J]. 遥感技术与应用, 2018, 33(6): 1030-1036.
[13] 张雅,尹小君,王伟强. 基于Landsat 8 OLI遥感影像的天山北坡草地地上生物量估算[J]. 遥感技术与应用, 2017, 32(6): 1012-1021.
[14] 马敏娜,袁文平. 青藏高原总初级生产力估算的模型差异[J]. 遥感技术与应用, 2017, 32(3): 406-418.
[15] 刘青瑞,居为民,张永光. 日光诱导叶绿素荧光估算中国典型生态系统总初级生产力的能力[J]. 遥感技术与应用, 2017, 32(2): 363-373.