遥感技术与应用 2022, Vol. 37 Issue (2): 368-378 DOI: 10.11873/j.issn.1004-0323.2022.2.0368 |
LUCC专栏 |
|
|
|
|
基于CNN的吉林一号卫星城市土地覆被制图潜力评估 |
吕冬梅1( ),马玥2,3( ),李华朋3 |
1.吉林建筑大学 电气与计算机学院,吉林 长春 130118 2.吉林建筑大学 测绘与勘查工程学院,吉林 长春 130118 3.中国科学院 东北地理与农业生态研究所,吉林 长春 130102 |
|
Evaluating the Potential of JL1 Remote Sensing Data in Urban Land Cover Classification Using Convolutional Neural Networks |
Lü Dongmei1( ),Yue Ma2,3( ),Huapeng Li3 |
1.School of Electrical and Computer Engineering,Jilin Jianzhu University,Changchun 130118,China 2.School of Geomatics and Prospecting Engineering,Jilin Jianzhu University,Changchun 130118,China 3.Northeast Institute of Geography and Agroecology,CAS,Changchun 130102,China |
1 |
Zhang Xueru, Yao Yifeng, Kong Shaojun, et al. The analysis on urban costruction land change and driving forces in Nanjing from 2000 to 2014[J]. Resources and Environment in the Yangtze Basin,2017,26(4): 552-562.
|
1 |
张雪茹, 姚亦锋, 孔少君,等. 南京市2000~2014年城市建设用地变化及驱动因子研究[J]. 长江流域资源与环境, 2017,26(4):552-562.
|
2 |
Zhang Chao, Li Zhixiao, Li Pengshan, et al. Urban-rural land use plan monitoring based on high spatial resolution remote sensing imagery classification[J].Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(11): 323-329.
|
2 |
张超, 李智晓, 李鹏山, 等.基于高分辨率遥感影像分类的城镇土地利用规划监测[J].农业机械学报,2015,46(11):323-329.
|
3 |
Fang Tao, Wang Dongzhi. Land use change analysis in the coastal aone of Zhuhai city based on ULAT method[J]. Geospatial Information, 2020, 18(3): 69-71.
|
3 |
方涛, 王冬至. 基于ULAT的珠海市海岸带土地利用变化分析[J]. 地理空间信息, 2020, 18(3): 69-71.
|
4 |
Lo C P, Choi J.A hybrid approach to urban land use/cover map-ping using Landsat 7 enhanced thematic Mapper Plus (ETM+) images[J]. International Journal of Remote Sensing,2004,25(14):2687-2700. DOI:10.1080/0143116031000 1618428 .
doi: 10.1080/0143116031000 1618428
|
5 |
Hu T Y, Yang J, Li X, et al. Mapping urban land use by using landsat images and open social data[J]. Remote Sensing, 2016, 8(2): 151. DOI: 10.3390/rs8020151 .
doi: 10.3390/rs8020151
|
6 |
Sun Danfeng, Yang Jihong, Liu Shunxi. Application of high-spatial IKNOS remote sensing images in land use classification and change monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002,18(2): 160-164.
|
6 |
孙丹峰, 杨冀红, 刘顺喜. 高分辨率遥感卫星影像在土地利用分类及其变化监测的应用研究[J]. 农业工程学报,2002,18(2):160-164.
|
7 |
Mawenda J, Watanabe T, Avtar R. An analysis of urban land use/land cover changes in blantyre city, Southern Malawi (1994-2018)[J]. Sustainability,2020,12(6):2377. DOI:10. 3390/su12062377 .
doi: 10. 3390/su12062377
|
8 |
Feng Xin, Du Shihong, Zhang Fangli, et al. Urban land classification of high-resolution images based on multi-scale fusion[J]. Geography and Geo-Information Science, 2013, 29(3): 43-47.
|
8 |
冯昕, 杜世宏, 张方利, 等. 基于多尺度融合的高分辨率影像城市用地分类[J]. 地理与地理信息科学, 2013, 29(3): 43-47.
|
9 |
Herold M, Liu X H, Clarke K C. Spatial metrics and image texture for mapping urban land use[J]. Photogrammetric Engineering and Remote Sensing, 2003, 69(9):991-1001. DOI: 10.14358/PERS.69.9.991 .
doi: 10.14358/PERS.69.9.991
|
10 |
Ziaei Z, Pradhan B, Mansor S, et al. A rule-based parameter aided with object-based classification approach for extraction of building and roads from WorldView-2 images[J]. Geocarto International,2014,29(5):554-569. DOI:10.1080/10106049. 2013.819039 .
doi: 10.1080/10106049. 2013.819039
|
11 |
Zhang Chenyang, Yang Changkun, Jia Mengna, et al. Change detection of land use in Wuhan City based on multi temporal band combination of GF-1[J]. Geomatics & Spatial Information Technology, 2016, 39(9): 33-35.
|
11 |
张晨阳,杨长坤, 贾萌娜, 等. 基于GF-1多时相波段组合的武汉市土地利用变化检测[J].测绘与空间地理信息, 2016, 39(9): 33-35.
|
12 |
Zhu Jishuai, Deng Guang, Tian Deyu, et al. Application of JL1 high-resolution image in urban management[J]. Satellite Application, 2020(3): 54-60.
|
12 |
朱济帅, 邓广, 田德宇, 等. 吉林一号高分辨率影像在城市管理中的应用[J]. 卫星应用, 2020(3): 54-60.
|
13 |
Han Rui, Huang Peng, Lu Nan, et al. Application of JL1 in surface water remote sensing monitoring[J]. Satellite Application,2020,99(3):49-55.
|
13 |
韩睿,黄鹏,芦楠,等.吉林一号在地表水遥感监测中的应用[J].卫星应用,2020,99(3):49-55.
|
14 |
Gu Xiaotian, Gao Xiaohong, Ma Huijuan, et al. Comparison of machine learning methods for land use/land cover classification in the complicated terrain regions[J]. Remote Sensing Technology and Application, 2019, 34(1): 57-67.
|
14 |
谷晓天, 高小红, 马慧娟, 等. 复杂地形区土地利用/土地覆被分类机器学习方法比较研究[J].遥感技术与应用,2019,34(1):57-67.
|
15 |
Deng Zeng, Li Dan, Ke Yinghai, et al. An Improved SVM algorithm for high spatial resolution remote sensing image classification[J]. Remote Sensing for Land and Resources, 2016, 28(3): 12-18.
|
15 |
邓曾, 李丹, 柯樱海, 等. 基于改进SVM算法的高分辨率遥感影像分类[J]. 国土资源遥感, 2016, 28(3): 12-18.
|
16 |
Yuan H, Van Der Wiele C F, Khorram S. An automated artificial neural network system for land use/land cover classification from Landsat TM imagery[J]. Remote Sensing. 2009, 1(3):243-265. DOI: 10.3390/rs1030243 .
doi: 10.3390/rs1030243
|
17 |
Marmanis D, Datcu M, Esch T, et al. Deep learning earth observation classification using imagenet pretrained networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(1): 105-109. DOI: 10.1109/LGRS.2015.2499239 .
doi: 10.1109/LGRS.2015.2499239
|
18 |
Persello C, Stein A. Deep fully convolutional networks for the detection of informal settlements in VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2325-2329. DOI: 10.1109/LGRS.2017.2763738 .
doi: 10.1109/LGRS.2017.2763738
|
19 |
Maggiori E, Tarabalka Y, Charpiat G, et al. High-resolution aerial image labeling with convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(12):7092-7103. DOI:10.1109/TGRS.2017. 2740362 .
doi: 10.1109/TGRS.2017. 2740362
|
20 |
Kussul N, Lavreniuk M, Skakun S, et al. Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 778-782. DOI: 10.1109/LGRS.2017.2681128 .
doi: 10.1109/LGRS.2017.2681128
|
21 |
Mei S H, Ji J Y, Hou J H, et al. Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8):4520-4533.
|
22 |
Tao Y T, Xu M Z, Zhang F, et al. Unsupervised-restricted deconvolutional neural network for very high resolution remote-sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 6805-6823. DOI: 10.1109/TGRS.2017.2734697 .
doi: 10.1109/TGRS.2017.2734697
|
23 |
Li Hongda, Gao Xiaohong, Tang Min. Land cover classification for different spatial resolution images from CNN[J]. Remote Sensing Technology and Application, 2020, 35(4): 749-758.
|
23 |
李宏达, 高小红, 汤敏. 基于CNN 的不同空间分辨率影像土地覆被分类研究[J]. 遥感技术与应用, 2020, 35(4): 749-758.
|
24 |
Zhou Zhuang, Li Shengyang, Zhang Kang, et al. Crop mapping using remotely sensed spectral and context features based on CNN[J]. Remote Sensing Technology and Application, 2019, 34(4): 694-703 .
|
24 |
周壮, 李盛阳, 张康, 等. 基于CNN和农作物光谱纹理特征进行作物分布制图[J]. 遥感技术与应用, 2019, 34(4): 694-703.
|
25 |
Li H P, Zhang C, Zhang S Q, et al. A hybrid OSVM-OCNN method for crop classification from fine spatial resolution remotely sensed imagery[J]. Remote Sensing, 2019, 11(20):2370. DOI: 10.3390/rs11202370 .
doi: 10.3390/rs11202370
|
26 |
Zhang C, Sargent I, Xin P, et al. An Object-based Convolutional Neural Network (OCNN) for urban land use classification[J]. Remote Sensing of Environment, 2018, 216:57-70. DOI: 10.1016/j.rse.2018.06.034 .
doi: 10.1016/j.rse.2018.06.034
|
27 |
Chen Leishi, Zhao Junsan, Li Yi, et al. On land use classification by means of machine learning based on multi-source remote sensing image fusion[J]. Journal of Southwest China Normal University(Natural Science Edition),2018,43(10):103-111.
|
27 |
陈磊士, 赵俊三, 李易, 等. 基于机器学习的多源遥感影像融合土地利用分类研究[J]. 西南师范大学学报: 自然科学版, 2018, 43(10): 103-111.
|
28 |
Li Quan, Wang Haiyan, Li Lin. A study of accuracy control of land cover classification based on MLH algorithm[J]. Scientific and Technological Management of Land and Resources, 2005, 22(4): 42-45.
|
28 |
李全, 王海燕, 李霖. 基于最大似然分类算法的土地覆盖分类精度控制研究[J]. 国土资源科技管理, 2005, 22(4): 42-45.
|
29 |
Han Ling. The classification model of RS images based on artificial neural network——MLP[J]. Bulletin of Surveying and Mapping, 2004(9): 29-30.
|
29 |
韩玲. 基于人工神经网络——多层感知器(MLP)的遥感影像分类模型[J]. 测绘通报, 2004(9): 29-30.
|
30 |
Wu Xueming, Zhang Huaiqing, Lin Hui,et al. Wetland change forecast in Beijing based on support vector machines[J]. Chinese Agricultural Science Bulletin, 2012, 28(14): 280-284.
|
30 |
吴学明, 张怀清, 林辉, 等. 基于支持向量机的北京市湿地变化预测研究[J]. 中国农学通报, 2012, 28(14): 280-284.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|