Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (2): 399-407    DOI: 10.11873/j.issn.1004-0323.2022.2.0399
LUCC专栏     
土地利用/覆被变化对地质灾害发育的影响研究
赵美龄1(),郝利娜1,2(),许晓露1,陈辰1,许强2
1.成都理工大学 地球科学学院,四川 成都 610059
2.成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059
Research on the Impact of Land Use/Cover Change on Geological Disaster Development
Meiling Zhao1(),Lina Hao1,2(),Xiaolu Xu1,Chen Chen1,Qiang Xu2
1.College of Earth Sciences,Chengdu University of Technology,Chengdu 610059,China
2.State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 610059,China
 全文: PDF(2785 KB)   HTML
摘要:

2018年8月印度喀拉拉邦遭受强降雨,引发大量地质灾害,造成巨大的经济损失和人员伤亡。为研究农业化进程中土地利用/覆被变化对地质灾害发育的影响,探求适宜的人地协调发展模式,以该地区受灾最严重的伊都基为研究区,基于已有的灾害点数据,利用Google Earth高分辨率遥感图像目视解译获取研究区灾害发生前8 a(2010年)和灾害发生时(2018年)的土地利用数据,基于Landsat TM/OLI数据提取的归一化植被指数计算研究区植被覆盖度,对比分析该地区地质灾害的发育与土地利用/覆被变化之间的关系。研究结果表明:①伊都基地区灾害点主要集中在中北部地区,分布在种植林、种植灌丛、建筑物、道路等人类活动影响较大的区域,该区域灾害点占总灾害数的80.46%;②伊都基地区灾害点的土地利用变化虽然较小,总体变化率为37%,但土地利用变化主要发生在种植灌丛、种植林等与人类活动密切相关的土地利用类型中;③伊都基地区植被覆盖度下降率为16.70%,在空间分布上,灾害点易发区域与植被覆盖度下降区域有较强的关联性。

关键词: 地质灾害土地利用植被覆盖GIS空间分析    
Abstract:

An extreme rainfall event hit Kerala in India, in August 2018, triggering a large number of geological disasters, causing serious economic losses and casualties. In order to study the impact of land use and its changes during the process of agriculturalization on the development of geological disasters, and to explore a suitable man-land coordinated development model, based on the disaster point data of Idukki, which is the most severely affected area, this paper obtained the land use data of each disaster point in 2010 and 2018 from Google Earth high-resolution remote sensing images and Landsat TM/OLI data extraction normalized difference vegetation index calculation of vegetation coverage to analyze the relationship between geological disasters and land use and its changes. The results show that: ①disasters in the study area are mainly concentrated in the north-central region, where planting forests, planting shrubs, buildings, roads, and other lands with human activities influence accounted for 80.46% of the total disasters; ②although land use change at the disaster site in the study area is few with the overall rate of 37%, however the changed land use are closely related to human activities, such as planted shrubs, planted forest land; ③the vegetation coverage decline rate in the study area was 16.70% , while disaster susceptibility areas had a better response to areas with reduced vegetation coverage spatially.

Key words: Geological disasters    Land use    Vegetation cover    GIS spatial analysis
收稿日期: 2020-07-16 出版日期: 2022-06-17
ZTFLH:  P694  
基金资助: 国家重点研发计划项目(2018YFC1505101);中国博士后科学基金项目(2017M622982)
通讯作者: 郝利娜     E-mail: 1164850842@qq.com;madingludejin@163.com
作者简介: 赵美龄(1997-),女,四川达州人,硕士研究生,主要从事生态地理信息系统方面的研究。E?mail:1164850842@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵美龄
郝利娜
许晓露
陈辰
许强

引用本文:

赵美龄,郝利娜,许晓露,陈辰,许强. 土地利用/覆被变化对地质灾害发育的影响研究[J]. 遥感技术与应用, 2022, 37(2): 399-407.

Meiling Zhao,Lina Hao,Xiaolu Xu,Chen Chen,Qiang Xu. Research on the Impact of Land Use/Cover Change on Geological Disaster Development. Remote Sensing Technology and Application, 2022, 37(2): 399-407.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.2.0399        http://www.rsta.ac.cn/CN/Y2022/V37/I2/399

图1  伊都基地理位置和高程影像
图2  2018年植被覆盖度及灾害点分布
一级类二级类代码一级类二级类代码
裸露的岩石裸露的岩石BRO林地开放天然林FNO
裸露的岩石和稀疏的草地BRG茂密的天然林FDN
裸露的岩石和稀疏的灌木BRS种植林FCP
裸露的岩石和稀疏的林地BRF混合种植林FMP
裸露的土壤裸露的农田BSL园地茶园TEA
裸露的土壤BSO橡胶园RUB
裸露的土壤和稀疏的草地BSG切坡裸露的切割斜坡CSB
裸露的土壤和稀疏的灌木BSS覆盖植被的切割斜坡CSV
裸露的土壤和稀疏的林地BSF建筑物建筑物BUI
草地天然草地GNA道路道路ROA
人工草地GMC采石场正在开采的采石场QUU
灌丛天然灌丛SNA被遗弃的采石场QUA
种植灌丛SPL
表1  研究区土地利用分类
土地利用类型

滑坡

/处

崩塌

/处

泥石流

/处

地质灾害

/处

百分比
BRF084120.54%
BRG5196301.35%
BRO6121190.86%
BRS372120.54%
BSF00330.14%
BSG50380.36%
BSL44127723.25%
BSO649190.86%
BSS01230.14%
BUI1070341416.36%
CSB40040.18%
CSV901100.45%
FCP756541356.09%
FDN10111391516.81%
FMP499830881536.78%
FNO5515301004.51%
GMC64530994.47%
GNA26413431.94%
QUA10010.05%
QUU20020.09%
ROA3014351.58%
RUB31014452.03%
TEA1202101325.96%
SNA1797331.49%
SPL209107329213.18%
表2  灾害点土地利用现状
图3  灾害点主要土地利用变化
土地利用类型2018年
BRFBRGBROBRSBSFBSGBSLBSOBSSBUICSBCSVFCPFDNFMPFNOGMCGNAQUAQUUROARUBSNASPLTEA
2010年BRF71
BRG25714111
BRO811
BRS127
BSF21
BSG663
BSL71221915203
BSO11511
BSS121
BUI92
CSB1
CSV15
FCP1210961122192
FDN1114411021
FMP1628132694172221523
FNO3114158632
GMC1541426281331
GNA111111322
QUU1
ROA31
RUB111361
SNA111112124
SPL1111813186721141157
TEA2148122
表3  灾害点土地利用转移矩阵
植被覆盖度等级面积/km2面积占比灾害数(处)灾害密度 (处/100 km2
178.041.78%45
295.652.18%3335
3400.739.15%15739
4694.7415.86%38555
53 111.4171.03%1 63753
表4  2018年植被覆盖度统计
植被覆盖度差值面积/km2面积占比灾害数(处)灾害密度 (处/100 km2
-45.180.12%239
-315.980.36%531
-2108.802.49%4239
-1601.0413.73%32254
03 372.8677.05%167550
1239.265.47%15866
220.930.48%943
34.830.11%241
48.780.20%111
表5  植被覆盖度变化统计
图4  植被覆盖度变化
1 Duan Yonghou. Basic characters of geo-hazards and its development trend in China[J]. Quaternary Sciences,1999,19(3):208-216.
1 段永侯. 我国地质灾害的基本特征与发展趋势[J]. 第四纪研究,1999,19(3):208-216.
2 Zhou Jingjing, Zhao Fasuo, Li Hui, et al. Correlational research between geological hazards and impact factors in Shaanxi Province[J]. Journal of Catastrophology,2019,34(2):228-234.
2 周静静,赵法锁,李辉,等. 陕西省地质灾害与影响因素相关性研究[J]. 灾害学,2019,34(2):228-234.
3 National Science and Technology Commission National Comprehensive Natural Disaster Research Group. China's Major Natural Disasters and Countermeasures[M]. Beijing:Science Press,1994.
3 国家科委全国重大自然灾害综合研究组. 中国重大自然灾害及减灾对策[M]. 北京:科学出版社,1994.
4 Persichillo M G, Bordoni M, Meisina C. The role of land use changes in the distribution of shallow landslides[J]. Science of The Total Environment, 2017, 574: 924-937. DOI:10.1016/j.scitotenv.2016.09.125 .
doi: 10.1016/j.scitotenv.2016.09.125
5 Garg A, Coo J L, Ng C W W. Field study on influence of root characteristics on soil suction distribution in slopes vegetated with cynodon dactylon and schefflera heptaphylla[J]. Earth Surface Processes & Landforms, 2015, 40(12): 1631-1643. DOI:10.1002/esp.3743 .
doi: 10.1002/esp.3743
6 Reichenbach P, Busca C, Mondini A C, et al. The influence of land use change on landslide susceptibility zonation: the briga catchment test site (Messina, Italy)[J]. Environmental Management,2014,54(6):1372-1384. DOI:10.1007/s00267- 014-0357-0 .
doi: 10.1007/s00267- 014-0357-0
7 Yang Yonghong, Wang Chenghua, Liu Shuzhen, et al. Experimental research on improving shear strength of soil in surface landslide by root system of different vegetation type[J]. Research of Soil and Water Conservation,2007,14(2):233-235.
7 杨永红,王成华,刘淑珍,等. 不同植被类型根系提高浅层滑坡土体抗剪强度的试验研究[J]. 水土保持研究,2007,14(2):233-235.
8 Li Jia, Wang Xia, Jia Haixia, et al. Ecological restoration with shrub roots for slope reinforcement in a shallow landslide-prone region[J]. Acta Ecologica Sinica,2019,39(14):5117-5126.
8 李佳,汪霞,贾海霞,等. 浅层滑坡多发区典型灌木根系对边坡土体抗剪强度的影响[J]. 生态学报,2019,39(14):5117-5126.
9 Zhu Junhua, Duan Xu, Chen Zhixin, et al. Discussion of the correlation between eco-environment and geological disasters in Yan'an area[J]. Research of Soil and Water Conservation,2017,24(4):163-167.
9 祝俊华,段旭,陈志新,等. 延安地区生态环境与地质灾害相关性探讨[J]. 水土保持研究,2017,24(4):163-167.
10 Wan Juan, Xiao Henglin, He Jun. Tensile properties of Magnolia multiflora’s roots and slope stability analysis[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2014,42(8):109-113.
10 万娟,肖衡林,何俊. 多花木兰根系抗拉特性及边坡稳定性分析[J]. 华中科技大学学报(自然科学版),2014,42(8):109-113.
11 Vuillez C, Tonini M, Sudmeier-rieux K, et al. Land use changes, landslides and roads in the Phewa Watershed, Western Nepal from 1979 to 2016[J]. Applied Geography, 2018, 94: 30-40. DOI:10.1016/j.apgeog.2018.03.003 .
doi: 10.1016/j.apgeog.2018.03.003
12 Pisano L, Zumpano V, Malek Ž, et al. Variations in the susceptibility to landslides, as a consequence of land cover changes: a look to the past, and another towards the future[J]. Science of the Total Environment, 2017, 601-602: 1147-1159. DOI:10.1016/j.scitotenv.2017.05.231 .
doi: 10.1016/j.scitotenv.2017.05.231
13 Wu Changrun, Zhao Dongmei, Liu Chengjing, et al. GIS-based analysis on impact factors and susceptibility evaluation of landslide hazard in Huaning County[J]. Research of Soil and Water Conservation,2019,26(6):212-218.
13 吴常润,赵冬梅,刘澄静,等. 基于GIS的华宁县滑坡灾害影响因子分析及易发性评价[J]. 水土保持研究,2019,26(6):212-218.
14 Chen Xuyu, Ni Huayong, Li Minghui, et al. Geo-hazard susceptibility evaluation based on weighted information value model and ISODATA cluster[J]. Journal of Catastrophology,2021,36(2):71-78.
14 陈绪钰,倪化勇,李明辉,等. 基于加权信息量和迭代自组织聚类的地质灾害易发性评价[J]. 灾害学,2021,36(2):71-78.
15 Du Xiaochen, Chen Li, Chen Tingfang. Hazard assessment of landslide in Dechang County of Liangshan State based on GIS[J]. Resources and Environment in the Yangtze Basin,2020,29(5): 1206-1215.
15 杜晓晨,陈莉,陈廷芳. 基于GIS的凉山州德昌县滑坡危险性评价[J]. 长江流域资源与环境,2020,29(5):1206-1215.
16 Sun Lina, Liang Dongmei. Effect of future land use change on Hydrology in Dongliaohe Basin[J]. Research of Soil and Water Conservation,2016,23(5):164-168.
16 孙丽娜,梁冬梅. 东辽河流域未来土地利用变化对水文影响的研究[J]. 水土保持研究,2016,23(5):164-168.
17 SANKAR G. Monsoon fury in Kerala-a geo-environmental appraisal[J]. Journal of the Geological Society of India, 2018, 92(4): 383-388. DOI:10.1007/s12594-018-1031-6 .
doi: 10.1007/s12594-018-1031-6
18 Naidu S, K.S.Sajinkumar, Oommen T, et al. Early warning system for shallow landslides using rainfall threshold and slope stability analysis[J]. Geoscience Frontiers, 2018, 9(6): 282-293. DOI:10.1016/j.gsf.2017.10.008 .
doi: 10.1016/j.gsf.2017.10.008
19 Singh B, Singh P, Supriva K, et al. An overview on Kerala floods: Loss of human lives as well as biodiversity in God’s own country[J]. International Journal of Fauna and Biological Studies, 2018, 5(6): 96-98.
20 Abraham M T, Pothuraju D, Satyam N. Rainfall thresholds for prediction of landslides in Idukki, India: An empirical approach[J]. Water,2019,11(10):2113. DOI:10.13140/RG. 2.2.23925.22245 .
doi: 10.13140/RG. 2.2.23925.22245
21 Promper C, Puissant A, Malet J P, et al. Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios[J]. Applied Geography, 2014, 53: 11-19. DOI:10.1016/j.apgeog.2014.05.020 .
doi: 10.1016/j.apgeog.2014.05.020
22 Abraham P B, Shaji E. Landslide hazard zonation in and around thodupuzha-Idukki- Munnar road, Idukki district, Kerala: a geospatial approach[J]. Journal of the Geological Society of India, 2013, 82(6): 649-656. DOI:10.1007/s12594-013-0203-7 .
doi: 10.1007/s12594-013-0203-7
23 Raju K, Kumar R A. Land use changes in udumbanchola taluk, Idukki district- Kerala:An analysis with the application of remote sensing data[J]. Journal of the India Society of Remote Sensing,2006,34(2):161-169. DOI:10.1007/BF02991821 .
doi: 10.1007/BF02991821
24 Sajinkumar K S, Anbazhagan S, Pradeepkumar A P, et al. Weathering and landslide occurrences in parts of Western Ghats, Kerala[J]. Journal of the Geological Society of India, 2011, 78(3): 249-257. DOI:10.1007/s12594-011-0089-1 .
doi: 10.1007/s12594-011-0089-1
25 Chen Xuexiong, Zhang Xiaojun, Chen Yonggui, et al. Spatiotemporal change of vegetation coverage in Shaanxi Province from 1998 to 2008[J]. Geomatics and Information Science of Wuhan University,2013,38(6):674-678.
25 陈学兄,张小军,陈永贵,等. 陕西省1998~2008年植被覆盖度的时空变化研究[J]. 武汉大学学报(信息科学版),2013,38(6):674-678.
26 Li Maomao, Wu Bingfang, Yan Changzhen, et al. Estimation of vegetation fraction in the upper basin of Miyun Reservoir by remote rensing[J]. Resources Science,2004,26(4):153-159.
26 李苗苗,吴炳方,颜长珍,等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学,2004,26(4):153-159.
27 Duan Hongteng, Wu Faqi, Yang Yifan, et al. Land use change and driving force analysis of Bayin River basin in the past 10 years[J]. Research of Soil and Water Conservation,2020,27(2):172-177.
27 段红腾,吴发启,杨一凡,等. 近10年巴音河流域土地利用变化及驱动力分析[J]. 水土保持研究,2020,27(2):172-177.
28 Ramachandran R M, Reddy C S. Monitoring of deforestation and land use changes (1925–2012) in Idukki District, Kerala, India using remote sensing and GIS[J]. Journal of the Indian Society of Remote Sensing, 2017, 45(1): 163-170. DOI:10.1007/s12524-015-0521-x .
doi: 10.1007/s12524-015-0521-x
29 Li Yan, Yu Pengtao, Wang Yanhui, et al. Effects of land use change on runoff in Rouyuanchuan small basin[J]. Science of Soil and Water Conservation,2013,11(3): 40-46.
29 李艳,于澎涛,王彦辉,等. 柔远川小流域土地利用强度变化对径流的影响[J]. 中国水土保持科学,2013,11(3):40-46.
30 Xu Gang, Hu Kunlin, Wen Jianfeng,et al. Assessment of disaster-prone areas considering the influence of terrain and neighborhood[J]. Bulletin of Surveying and Mapping,2021(7):59-64.
30 徐刚,胡坤霖,温剑峰,等. 顾及地形邻域影响的地质灾害风险易发区评估[J]. 测绘通报,2021(7):59-64.
[1] 郭长庆,张学霞,侯亚丽,匡文慧. 基于多源时空信息的西宁和拉萨近70年来城市扩展过程重现及地表覆盖变化分析[J]. 遥感技术与应用, 2022, 37(2): 342-353.
[2] 赵传武,郭伟,阎跃观,戴华阳,张建. 典型资源型城市的植被覆盖变化及驱动力分析[J]. 遥感技术与应用, 2022, 37(2): 389-398.
[3] 刘娜,张风丽,李志坤,邵芸,庞雷,李璐. 基于SAR与NL数据的建成区提取及其在WRF风场模拟优化中应用[J]. 遥感技术与应用, 2022, 37(2): 488-498.
[4] 王曦,张怡雯. 基于Landsat影像的北京植被覆盖度变化趋势分析[J]. 遥感技术与应用, 2021, 36(6): 1388-1397.
[5] 段金亮,张瑞,李奎,庞家泰. 一种基于噪声水平估计的扩展线性光谱分解算法[J]. 遥感技术与应用, 2021, 36(4): 820-826.
[6] 陈妮,应丰,王静,李健. 基于U-Net的高分辨率遥感图像土地利用信息提取[J]. 遥感技术与应用, 2021, 36(2): 285-292.
[7] 张爱华,潘耀忠,明艳芳,王金云. 多源信息耦合的GDP空间化研究—以北京市为例[J]. 遥感技术与应用, 2021, 36(2): 463-472.
[8] 付甜梦,张丽,陈博伟,闫敏. 基于GEE平台的海岛地表覆盖提取及变化监测—以苏拉威西岛为例[J]. 遥感技术与应用, 2021, 36(1): 55-64.
[9] 郑琪,邸苏闯,潘兴瑶,刘洪禄,朱永华,张岑,周星. 基于Rapid Eye数据的北京生态涵养区土地利用分类及变化研究[J]. 遥感技术与应用, 2020, 35(5): 1118-1126.
[10] 程雨婷,刘昭华,鹿琳琳,刘士彪,李庆亭. 一带一路沿海超大城市热岛时空特征遥感分析[J]. 遥感技术与应用, 2020, 35(5): 1197-1205.
[11] 郭梦辉,季亚南,柯樱海,陈少辉. 土地利用变化下北京市热通量的时空演变[J]. 遥感技术与应用, 2020, 35(5): 1218-1225.
[12] 李智礼,匡文慧,张澍. 近70 a天津主城区城市土地利用/覆盖变化遥感监测与时空分析[J]. 遥感技术与应用, 2020, 35(3): 527-536.
[13] 陈馨,匡文慧. 基于云平台的中哈干旱区典型城市地表覆盖变化遥感监测与比较[J]. 遥感技术与应用, 2020, 35(3): 548-557.
[14] 谭美宝,冉有华,苏阳,李新,杜得彦,廉耀康. 黑河流域2001~2017年植被变化特征及其可延续性评价[J]. 遥感技术与应用, 2020, 35(2): 335-344.
[15] 龙爽,郭正飞,徐粒,周华真,方伟华,许映军. 基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J]. 遥感技术与应用, 2020, 35(2): 326-334.