Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (3): 681-691    DOI: 10.11873/j.issn.1004-0323.2022.3.0681
林业遥感专栏     
基于无人机的喀斯特退化天坑地下森林树高特征研究
张永永1,2(),税伟1,2(),冯洁1,2,孙祥1,2,孙晓瑞1,2,刘橼锰1,2,李慧1,2
1.福州大学环境与安全工程学院,福建 福州 350116
2.福州大学空间数据挖掘与信息共享教育部重点实验室,福建 福州 350116
Tree-height Characterization of Karst Degraded Tiankeng Underground Forests Using Unmanned Aerial Vehicles
yongyong Zhang1,2(),Wei Shui1,2(),Jie Feng1,2,Xiang Sun1,2,Xiaorui Sun1,2,Yuanmeng Liu1,2,Hui Li1,2
1.College of Environment & Safety Engineering Fuzhou University,Fuzhou University,Fuzhou 350116,China
2.Key Laboratory of Spatial Data Mining & Information Sharing of Ministry of Education,Fuzhou University,Fuzhou 350116,China
 全文: PDF(7309 KB)   HTML
摘要:

基于无人机提取喀斯特退化天坑地下森林的树高特征,探索乔木树高的生长策略与天坑局部圈闭化生境的关系,研究退化天坑作为物种避难所的价值。通过无人机遥感技术对退化天坑进行三维重建,提取退化天坑内外的树高信息。结果表明:退化天坑地下森林平均树高较地表高出约5 m。地下森林平均树高为10.47 m,地表平均树高为5.43 m,地表南坡平均树高为5.75 m,坑内树高的分布特征受海拔影响显著。在喀斯特天坑微生境的作用下,与坑外地表相比,坑内地下森林在树高方面具有显著的优势,光照是地下森林乔木类植物种内和种间竞争的主要因子,垂直梯度是退化天坑植被树高分布格局的首要特征。无人机遥感技术能够快速地获取退化天坑地下森林的树高信息,具有推广潜力。

关键词: 天坑地下森林无人机树高    
Abstract:

Based on UAV extraction of tree height characteristics of underground forests in graded karst Tiankeng, we explored the relationship between the growth strategy of tree height and the local enclosure habitat of graded Tiankeng, and studied the value of graded Tiankeng as a refuge for species. The graded Tiankeng was reconstructed in three dimensions by unmanned aerial remote sensing technology to extract tree height information inside and outside the graded Tiankeng.The results showed that the average tree height in the underground forest of degraded Tiankengs is about 5m higher than the surface. The average tree height in the underground forest is 10.47 m; the average tree height on the surface is 5.43 m; and the average tree height on the south slope of the surface is 5.75 m. The distribution characteristics of tree height in the Tiankeng are significantly influenced by elevation. Under the effect of karst Tiankeng microhabitats, the underground forest in the Tiankeng has a significant advantage in tree height compared with the surface outside the Tiankeng. Light is the main factor of intra- and interspecific competition among tree species in the underground forest, and vertical gradient is the primary feature of tree height distribution pattern of degraded Tiankeng vegetation. UAV remote sensing technology has the potential to be promoted as it can quickly obtain information on tree height in degraded Tiankeng underground forests.

Key words: Tiankeng    Underground forest    UAV    Tree height
收稿日期: 2021-03-19 出版日期: 2022-08-25
ZTFLH:  TP79  
基金资助: 国家自然科学基金项目“基于功能性状的云南喀斯特天坑植物群落构建机制研究”(41871198)
通讯作者: 税伟     E-mail: zh_yongyong@163.com;shuiweiman@163.com
作者简介: 张永永(1995-),女,浙江温州人,硕士研究生,主要从事遥感与生态学研究。E?mail:zh_yongyong@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张永永
税伟
冯洁
孙祥
孙晓瑞
刘橼锰
李慧

引用本文:

张永永,税伟,冯洁,孙祥,孙晓瑞,刘橼锰,李慧. 基于无人机的喀斯特退化天坑地下森林树高特征研究[J]. 遥感技术与应用, 2022, 37(3): 681-691.

yongyong Zhang,Wei Shui,Jie Feng,Xiang Sun,Xiaorui Sun,Yuanmeng Liu,Hui Li. Tree-height Characterization of Karst Degraded Tiankeng Underground Forests Using Unmanned Aerial Vehicles. Remote Sensing Technology and Application, 2022, 37(3): 681-691.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.3.0681        http://www.rsta.ac.cn/CN/Y2022/V37/I3/681

图1  研究区区位图(其中S1、S2为深陷塘地下森林样方,B为巴家陷塘地下森林样方,SG1-3和BG1-5分别为深陷塘和巴家陷塘坑外的地表样方;(a)为退化天坑示意图;(b)为无人机;(c)为RTK(Real-time kinematic))
图 2  无人机数据处理和树高提取流程图
图 3  退化天坑地下森林及地表样方树顶点提取结果局部放大图像(其中S1、S2为深陷塘地下森林样方,B为巴家陷塘地下森林样方,SG1-3和BG1-5分别为深陷塘和巴家陷塘坑外的地表样方)
编号 ID

提取

株树

目视解译株树误判株树漏判株树精度
总体精度 OA错分精度 CE漏分精度 OE
总计2325230415413395.34%6.54%5.51%
S118918016795.00%8.89%3.89%
S219821071994.29%3.33%9.05%
B25123819694.54%7.98%2.52%
SG121823822291.60%0.84%9.24%
SG220718919190.48%10.05%0.53%
SG3247252162198.02%6.35%8.33%
BG1219223222698.21%9.87%11.66%
BG219317818391.57%10.11%1.69%
BG347481297.92%2.08%4.17%
BG42792747298.18%2.55%0.73%
BG5277274272498.91%9.85%8.76%
表 1  退化天坑地下森林及地表样方树木株数提取精度
图4  退化天坑地下森林树高林分参数精度验证
图5  退化天坑内外DOM、CHM、DSM、DEM提取结果(其中SG1-3和BG1-5分别为深陷塘和巴家陷塘坑外的地表样方)
图 6  退化天坑内外林分参数提取结果(其中S1、S2为深陷塘地下森林,B为巴家陷塘地下森林,SG1-3和BG1-5分别为深陷塘和巴家陷塘坑外的地表样方)
编号树高 <5 m树高 5 m~10 m树高 10 m~15 m树高>15 m总株数株数密度(株/m2)
坑内S1186356521890.02
S2246352591980.02
B4514054122510.03
坑内汇总(24 300 m2)87/13.64%266/41.69%162/25.39%123/19.28%6380.03
地表SG112592102180.03
SG219116002070.03
SG3421564902470.03
BG151168002190.03
BG214050301930.02
BG3361100470.01
BG4176100302790.03
BG51461072402770.03
地表汇总(64 800 m2)907/53.76%700/41.49%80/4.74%0/0.00%16870.03
表2  退化天坑地下森林与地表样方株数统计
图 7  喀斯特天坑地下森林与地表样方树高对比箱形图(其中S1、S2为深陷塘地下森林样方,B为巴家陷塘地下森林样方,SG1-3和BG1-5分别为深陷塘和巴家陷塘坑外的地表样方)
图8  退化天坑南侧地下森林及地表南坡树高与DEM、坡度的关系
1 Zhu Xuewen, Chen Weihai. Tiankengs in the Karst of China[J]. Carsologica Sinica,2006(S1): 7-24.
1 朱学稳,陈伟海. 中国的喀斯特天坑[J]. 中国岩溶, 2006(): 7-24.
2 Tony W. Applying ecology for cave management in China and neighbouring countries[J]. Journal of Applied Ecology, 2010, 46(3): 520-523.
3 Chen Yiping, Jiang Cong, Jian Xiaomei, et al. Spatial distribution characteristics of grassland plant communities in a moderately degraded Tiankeng in Zhanyi, Yunnan[J]. Acta Ecologica Sinica,2018,38(22): 8008-8021.
3 陈毅萍,江聪,简小枚,等. 云南沾益中度退化天坑草地植物群落水平空间分布特征[J]. 生态学报, 2018, 38(22): 8008-8021.
4 He B, Miao C, Wen S. Trend, change Abrupt, and periodicity of streamflow in the mainstream of Yellow River[J]. Environmental Monitoring and Assessment, 2013, 185(7): 6187-6199.
5 Guo Pingping, Shui Wei, Jiang Cong, et al. Niche characteristics of understory dominant species of talus slope in degraded Tiankeng[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3635-3645.
5 郭平平,税伟,江聪,等. 退化天坑倒石坡林下优势物种生态位特征[J]. 应用生态学报, 2019, 30(11): 3635-3645.
6 Zhao Weijun, Liu Xiande, Jing Wenmao, et al. Spatial Heterogeneity of community structure of picea crassifolia forest in Qilian Mountains, China[J]. Chinese Journal of Applied Ecology, 2015, 26(9): 2591-2599.
6 赵维俊,刘贤德,敬文茂,等. 祁连山青海云杉林群落结构的空间异质性[J]. 应用生态学报, 2015, 26(9): 2591-2599.
7 Dong Lixin. New development of forest canopy height remote sensing[J]. Remote Sensing Technology and Application, 2016, 31(5): 833-845.
7 董立新. 林分平均高度卫星遥感新进展[J]. 遥感技术与应用, 2016, 31(5): 833-845.
8 Koch G, Sillett S, Jennings G, et al. The limits to tree height[J]. Nature, 2004, 428(6985): 851-854.
9 Liu H, Gleason S, Hao G, et al. Hydraulic traits are coordinated with maximum plant height at the global scale[J].Science Advances,2019,5(2):v1332. DOI:10.1126/sciadv.aav1332 .
doi: 10.1126/sciadv.aav1332
10 Yang Xuefeng. Estimation height of populus euphratica in Tarim river using VHR satellite images[J].Remote Sensing Technology and Application, 2021,36(5):1199-1208.
10 杨雪峰. 使用高分遥感影像获取塔里木河胡杨高度信息[J]. 遥感技术与应用,2021,36(5):1199-1208.
11 Swayze N C, Tinkham W T, Vogeler J C, et al. Influence of flight parameters on UAS-based monitoring of tree height, diameter, and density[J]. Remote Sensing of Environment, 2021, 263(5):112540. DOI:10.1016/j.rse.2021.112540 .
doi: 10.1016/j.rse.2021.112540
12 Zarco-Tejada P, Diaz-Varela R, Angileri V, et al. Tree height quantification using very high resolution imagery acquired from an Unmanned Aerial Vehicle (UAV) and automatic 3D photo-reconstruction methods[J]. European Journal of Agronomy, 2014, 55: 89-99.
13 Luo Yubo, Huang Hongyu, Tang Liyu, et al. Tree height and diameter extraction with 3D reconstruction in a forest based on TLS[J]. Remote Sensing Technology and Application, 2019, 34(2): 243-252.
13 骆钰波,黄洪宇,唐丽玉,等. 基于地面激光雷达点云数据的森林树高、胸径自动提取与三维重建[J]. 遥感技术与应用, 2019, 34(2): 243-252.
14 Chung C, Huang C. Hindcasting tree heights in tropical forests using time-series unmanned aerial vehicle imagery[J]. Agricultural and Forest Meteorology,2020,290: 108029.
15 Jiang Cong, Shui Wei, Jian Xiaomei, et al. Soil microorganism distribution characteristics of talus slope of negative topography in a degraded Karst Tiankeng in Southwestern China[J]. Acta Ecologica Sinica,2019,39(15):5642-5652.
15 江聪,税伟,简小枚,等. 西南喀斯特退化天坑负地形倒石坡的土壤微生物分布特征[J]. 生态学报, 2019, 39(15): 5642-5652.
16 Zhang W, Qi J, Wan P, et al. An easy-to-use airborne lidar data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501.
17 Wulder M, Niemann K, Goodenough D. Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery[J]. Remote Sensing of Environment, 2000, 73(1): 103-114.
18 Hu Xinyue, Ni Haiming, Qi Dawei. Tree counts extraction based on UAV imagery[J]. Forest Engineering, 2021, 37(1): 6-12.
18 胡馨月,倪海明,戚大伟. 基于无人机影像的树木株数提取[J]. 森林工程, 2021, 37(1): 6-12.
19 He Yi, Zhou Xiaocheng, Huang Hongyu, et al. Counting tree number in subtropical forest districts based on UAV remote sensing images[J]. Remote Sensing Technology and Application, 2018, 33(1): 168-176.
19 何艺,周小成,黄洪宇,等. 基于无人机遥感的亚热带森林林分株数提取[J]. 遥感技术与应用, 2018, 33(1): 168-176.
20 Zhang Zhihui, Liu Wen, Li Hanxiao, et al. The spatial distribution pattern of rock in rocky desertification area based on unmanned aerial vehicle imagery and object-oriented classification method[J]. Journal of Geo-Information Science, 2020, 22(12): 2436-2444.
20 张志慧,刘雯,李笑含,等. 基于无人机航摄影像的喀斯特地区裸岩信息提取及景观格局分析[J]. 地球信息科学学报, 2020, 22(12): 2436-2444.
21 Liu Jiangjun, Gao Haili, Fang Luming, et al. Tree vertex and height extraction based on UAV imagery and analysis on its Influencing factors[J].Forest Resources Management,2019(4): 107-116.
21 刘江俊,高海力,方陆明,等. 基于无人机影像的树顶点和树高提取及其影响因素分析[J]. 林业资源管理, 2019(4): 107-116.
22 Panagiotidis D, Abdollahnejad A, Surový P, et al. Determining tree height and crown diameter from high-resolution UAV imagery[J]. International Journal of Remote Sensing,2017, 38(8-10): 2392-2410.
23 Shui Wei, Chen Yiping, Jian Xiaomei, et al. Plant diversity characteristics of original Karst tiankeng along vertical gradient: A case study of Zhanyi Tiankeng in Yunnan Province, China[J]. Mountain Research, 2018, 36(1): 53-62.
23 税伟,陈毅萍,简小枚,等. 喀斯特原生天坑垂直梯度上植物多样性特征——以云南沾益天坑为例[J]. 山地学报, 2018, 36(1): 53-62.
24 Su Y, Tang Q, Mo F, et al. Karst Tiankengs as refugia for indigenous tree flora amidst a degraded landscape in southwestern China[J]. Scientific Reports, 2017, 7(1): 4249.
25 Van C R, Collet C, Lacombe E, et al. Gap partitioning among temperate tree species across a regional soil gradient in windstorm-disturbed forests[J]. Forest Ecology and Management, 2010, 260(1): 146-154.
26 Shen Zehao, Zhang Xinshi. The spatial pattern and topographic interpretation of the forest vegetation at dalaoling region in the Three Gorges[J]. Chinese Bulletin of Botany,2000,42(10): 1089-1095.
26 沈泽昊,张新时. 三峡大老岭地区森林植被的空间格局分析及其地形解释[J]. 植物学报, 2000, 42(10): 1089-1095.
27 Yu Min, Zhou Zhiyong, Kang Fengfeng, et al. Gradient analysis and environmental interpretation of understory herb-layer communities in Xiaoshegou of Lingkong Mountain, Shanxi, China[J]. Chinese Journal of Plant Ecology, 2013, 37(5): 373-383.
27 余敏,周志勇,康峰峰,等. 山西灵空山小蛇沟林下草本层植物群落梯度分析及环境解释[J]. 植物生态学报, 2013, 37(5): 373-383.
28 Hu Yujia, Wang Yonghua, Ding Xiaoqiu, et al. A comparison of plant species diversity with different slope direction in Wuzhishan, Hainan Island[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2003,42(2): 86-89.
28 胡玉佳,汪永华,丁小球,等. 海南岛五指山不同坡向的植物物种多样性比较[J]. 中山大学学报(自然科学版),2003,42(2):86-89.
29 Zhang T, Shen S, Cheng C, et al. Long-range correlation analysis of soil temperature and moisture on A'rou hillsides, Babao River Basin[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(22): 12606-12620.
30 Mu Lijuan, Jiang Chong, He Bin, et al. Response of vegetation coverage to climate change in Mongolian plateau during recent 10 years[J].Acta Ecologica Sinica,2014,34(5):1295-1301.
30 缪丽娟,蒋冲,何斌,等. 近10年来蒙古高原植被覆盖变化对气候的响应[J]. 生态学报, 2014, 34(5): 1295-1301.
31 Luo Ye, Wang Jun, Yang Yuchun, et al. Simulating site index of juglans mandshurica using a random effect model in Three Provinces of Northeast China[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2549-2557.
31 罗也,王君,杨雨春,等. 利用随机效应模型模拟东北三省胡桃楸地位指数[J]. 应用生态学报, 2020, 31(8): 2549-2557.
32 Liu Shuaicheng, Li Zhihui, Li Yan, et al. Effects of different slope positions on growth of Fokienia Hodginsii[J]. Journal of Central South University of Forestry & Technology, 2014, 34(12): 52-55.
32 刘帅成,李志辉,李艳,等. 不同坡位对福建柏生长影响的研究[J]. 中南林业科技大学学报,2014, 34(12): 52-55.
33 Tan Yibo, Shen Wenhui, Tian Hongdeng, et al. Tree architecture variation of plant communities along altitude and impact factors in Maoer Mountain, Guangxi, China[J]. Chinese Journal of Applied Ecology,2019,30(8):2614-2620.
33 谭一波,申文辉,田红灯,等. 猫儿山不同海拔植物群落树木构型差异及其影响因子[J]. 应用生态学报,2019,30(8):2614-2620.
34 Sessitsch A, Weilharter A, Gerzabek M, et al. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment[J]. Applied & Environmental Microbiology, 2001, 67(9): 4215-4224.
35 Zhu Sufeng, Jiang Cong, Shui Wei, et al. Vertical distribution characteristics of plant community in shady slope of degraded Tiankeng: A case study of Zhanyi Shenxiantang in Yunnan, China[J]. Chinese Journal of Applied Ecology. 2020, 31(5): 1496-1504.朱粟锋,江聪,税伟,等. 退化天坑倒石堆阴坡植物群落垂直分布特征——以云南沾益深陷塘为例[J]. 应用生态学报, 2020, 31(5): 1496-1504.
[1] 黄耀欢,熊标,杨海军,伍程斌,朱海涛. 入河排污口遥感排查进展评述[J]. 遥感技术与应用, 2022, 37(1): 24-33.
[2] 李淑贞,徐大伟,范凯凯,陈金强,佟旭泽,辛晓平,王旭. 基于无人机与卫星遥感的草原地上生物量反演研究[J]. 遥感技术与应用, 2022, 37(1): 272-278.
[3] 刘帅,栾奎峰,谭凯,张卫国. 基于无人机LiDAR点云的多类型植被覆盖滩涂地形滤波[J]. 遥感技术与应用, 2021, 36(6): 1272-1283.
[4] 杨雪峰. 使用高分遥感影像获取塔里木河胡杨高度信息[J]. 遥感技术与应用, 2021, 36(5): 1199-1208.
[5] 胡宜娜,安如,艾泽天,都伟冰. 基于无人机高光谱影像的三江源草种精细识别研究[J]. 遥感技术与应用, 2021, 36(4): 926-935.
[6] 刘鹤,顾玲嘉,任瑞治. 基于无人机遥感技术的森林参数获取研究进展[J]. 遥感技术与应用, 2021, 36(3): 489-501.
[7] 边瑞,年雁云,勾晓华,贺泽宇,田行宜. 基于无人机激光雷达的森林冠层高度分析[J]. 遥感技术与应用, 2021, 36(3): 511-520.
[8] 廖鸿燕,周小成,黄洪宇. 基于无人机遥感技术的台风灾害倒伏绿化树木检测[J]. 遥感技术与应用, 2021, 36(3): 533-543.
[9] 帅艳民,杨健,吴昊,邵聪颖,徐辛超,刘明岳,刘涛,梁继. 基于无人机观测的水稻冠层样方多角度反射特点分析[J]. 遥感技术与应用, 2021, 36(2): 342-352.
[10] 赵亮,刘宇,罗勇. 数字表面模型(DSM)参数指示林窗特征的有效性研究[J]. 遥感技术与应用, 2021, 36(2): 420-430.
[11] 夏炎,黄亮,王枭轩,陈朋弟. 基于无人机影像的烟草精细提取[J]. 遥感技术与应用, 2020, 35(5): 1158-1166.
[12] 郝睿,李兆富,张舒昱,潘剑君,姜小三,张文敏,宋金超. 整合无人机和面向对象的农村居住环境信息提取[J]. 遥感技术与应用, 2020, 35(3): 576-586.
[13] 王飞龙,王福民,胡景辉,谢莉莉,谢京凯. 基于相对光谱变量的无人机遥感水稻估产及产量制图[J]. 遥感技术与应用, 2020, 35(2): 458-468.
[14] 韦蕾蕾,方陆明,陈磊,郑辛煜. 基于无人机单视场全景图的地块面积测量研究[J]. 遥感技术与应用, 2020, 35(2): 484-496.
[15] 何原荣,陈平,苏铮,王植,李权海. 基于三维激光扫描与无人机倾斜摄影技术的古建筑重建[J]. 遥感技术与应用, 2019, 34(6): 1343-1352.