遥感技术与应用 2022, Vol. 37 Issue (3): 713-720 DOI: 10.11873/j.issn.1004-0323.2022.3.0713 |
遥感应用 |
|
|
|
|
耦合SVM和Cloud-Score算法的Sentinel-2影像云检测模型研究 |
李健锋1,3,4,5( ),刘思琪1,3,4,5,李劲彬1,3,4,5,彭飚1,3,4,5,叶虎平2( ) |
1.陕西地建土地工程技术研究院有限责任公司,陕西 西安 710021 2.中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 100101 3.陕西省土地工程建设集团有限责任公司,陕西 西安 710075 4.自然资源部退化及未利用土地整治工程重点实验室,陕西 西安 710075 5.陕西省土地整治工程技术研究中心,陕西 西安 710075 |
|
Research on Cloud Detection Model of Sentinel-2 Image Coupled with SVM and Cloud-Score Algorithm |
Jianfeng Li1,3,4,5( ),Siqi Liu1,3,4,5,Jinbin Li1,3,4,5,Biao Peng1,3,4,5,Huping Ye2( ) |
1.Institute of Land Engineering and Technology,Shaanxi Provincial Land Engineering Construction Group Co. ,Ltd. ,Xi'an 710021,China 2.State Key Laboratory of Resources and Environmental Information System,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China 3.Shaanxi Provincial Land Engineering Construction Group Co. ,Ltd. ,Xi'an 710075,China 4.Key Laboratory of Degraded and Unused Land Consolidation Engineering,the Ministry of Natural Resources,Xi’an 710075,China 5.Shaanxi Provincial Land Consolidation Engineering Technology Research Center,Xi’an 710075,China |
引用本文:
李健锋,刘思琪,李劲彬,彭飚,叶虎平. 耦合SVM和Cloud-Score算法的Sentinel-2影像云检测模型研究[J]. 遥感技术与应用, 2022, 37(3): 713-720.
Jianfeng Li,Siqi Liu,Jinbin Li,Biao Peng,Huping Ye. Research on Cloud Detection Model of Sentinel-2 Image Coupled with SVM and Cloud-Score Algorithm. Remote Sensing Technology and Application, 2022, 37(3): 713-720.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.3.0713
或
http://www.rsta.ac.cn/CN/Y2022/V37/I3/713
|
1 |
Foga S, Scaramuzza P L, Guo S, et al. Cloud detection algorithm comparison and validation for operational Landsat data products[J]. Remote Sensing of Environment, 2017, 194: 379-390. DOI: 10.1016/j.rse.2017.03.026 .
doi: 10.1016/j.rse.2017.03.026
|
2 |
Li Z, Shen H, Cheng Q, et al. Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 197-212. DOI: 10.1016/j.isprsjprs.2019.02.017 .
doi: 10.1016/j.isprsjprs.2019.02.017
|
3 |
Sun L, Yang X, Jia S, et al. Satellite data cloud detection using deep learning supported by hyperspectral data[J]. International Journal of Remote Sensing, 2020, 41(4): 1349-1371. DOI: 10.1080/01431161.2019.1667548 .
doi: 10.1080/01431161.2019.1667548
|
4 |
Wang C, Liu Y, Guo L, et al. A smart agricultural service platform for crop planting, monitoring and management-PIE-engine landscape[C]∥ 2021 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics). IEEE, 2021: 1-6.DOI:10.1109/Agro-Geoinformatics50104.2021.9530347 .
doi: 10.1109/Agro-Geoinformatics50104.2021.9530347
|
5 |
Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote sensing of Environment, 2017, 202: 18-27. DOI: 10.1016/j.rse.2017.06.031 .
doi: 10.1016/j.rse.2017.06.031
|
6 |
Xiong J, Thenkabail P S, Gumma M K, et al. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126: 225-244. DOI: 10.1016/j.isprsjprs.2017.01.019 .
doi: 10.1016/j.isprsjprs.2017.01.019
|
7 |
Carrasco L, O’Neil A W, Morton R D, et al. Evaluating combinations of temporally aggregated Sentinel-1, Sentinel-2 and Landsat 8 for land cover mapping with Google Earth Engine[J]. Remote Sensing, 2019, 11(3): 288. DOI: 10.3390/rs11030288 .
doi: 10.3390/rs11030288
|
8 |
Wang L, Diao C, Xian G, et al. A summary of the special issue on remote sensing of land change science with Google Earth Engine[J]. 2020,248:112002. DOI:10.1016/j.rse. 2020.112002 .
doi: 10.1016/j.rse. 2020.112002
|
9 |
ESA. Level-1C Cloud Masks-Sentinel-2 MSI Technical Guide-Sentinel Online[EB/OL]..
|
10 |
Housman I W, Chastain R A, Finco M V. An evaluation of forest health insect and disease survey data and satellite-based remote sensing forest change detection methods: Case studies in the United States[J]. Remote Sensing, 2018, 10(8): 1184. DOI: 10.3390/rs10081184 .
doi: 10.3390/rs10081184
|
11 |
Research EO. Cloud Masks at Your Service[EB/OL]. .
|
12 |
Clerc S, Devignot O, Pessiot L. S2 MPC data quality report[R]. 2015.
|
13 |
Coluzzi R, Imbrenda V, Lanfredi M, et al. A first assessment of the Sentinel-2 Level 1-C cloud mask product to support informed surface analyses[J]. Remote Sensing of Environment, 2018, 217: 426-443. DOI: 10.1016/j.rse.2018.08.009 .
doi: 10.1016/j.rse.2018.08.009
|
14 |
Nguyen M D, Baez-Villanueva O M, Bui D D, et al. Harmonization of Landsat and Sentinel 2 for crop monitoring in drought prone areas: Case studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon)[J]. Remote Sensing,2020,12(2):281. DOI: 10.3390/rs12020281 .
doi: 10.3390/rs12020281
|
15 |
Qiu S, Zhu Z, He B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4-8 and Sentinel-2 imagery[J]. Remote Sensing of Environment, 2019, 231: 111205. DOI: 10.1016/j.rse.2019.05.024 .
doi: 10.1016/j.rse.2019.05.024
|
16 |
Main-Knorn M, Pflug B, Louis J, et al. Sen2Cor for Sentinel-2[C]∥ Image and Signal Processing for Remote Sensing XXIII. International Society for Optics and Photonics, 2017, 10427: 1042704. DOI: 10.1117/12.2278218 .
doi: 10.1117/12.2278218
|
17 |
Hagolle O, Huc M, Auer S, et al. MAJA algorithm theoretical basis document[R]. 2017.
|
18 |
Zupanc A. Improving cloud detection with machine learning[R]. 2017.
|
19 |
Ke G, Meng Q, Finley T, et al. Lightgbm: A highly efficient gradient boosting decision tree[J]. Advances in Neural Information Processing Systems,2017,30:3146-3154. DOI:10.1080/09512748.2017.1375000 .
doi: 10.1080/09512748.2017.1375000
|
20 |
Chung C. What are the strategic and economic implications for South Asia of China's Maritime Silk Road initiative?[J]. The Pacific Review,2018,31(3):315-332. DOI: 10.1080/0951 2748.2017.1375000 .
doi: 10.1080/0951 2748.2017.1375000
|
21 |
Drusch M, Del Bello U, Carlier S, et al. Sentinel-2: ESA's optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment,2012,120:25-36. DOI: 10.1016/j.rse.2011.11.026 .
doi: 10.1016/j.rse.2011.11.026
|
22 |
Sanchez A H, Picoli M C A, Camara G, et al. Comparison of Cloud cover detection algorithms on Sentinel-2 images of the amazon tropical forest[J]. Remote Sensing, 2020, 12(8): 1284. DOI: 10.3390/rs12081284 .
doi: 10.3390/rs12081284
|
23 |
Li Jianfeng, Ye Huping, Zhang Zongke, et al. Spatiotemporal change analysis of Sri Lanka inland water based on Landsat imagery[J]. Geo-Information Science, 2019,21 (5):781-8.
|
23 |
李健锋, 叶虎平, 张宗科,等. 基于Landsat影像的斯里兰卡内陆湖库水体时空变化分析[J]. 地球信息科学学报,2019,21(5):781-788.
|
24 |
Deng Naiyang, Tian Yingjie. A new method of data mining-support vector machine[M]. Beijing:Science Publication, 2004.
|
24 |
邓乃扬,田英杰. 数据挖掘中的新方法:支持向量机[M]. 北京:科学出版社, 2004.
|
25 |
Guo Y, Jia X, Paull D. Effective sequential classifier training for SVM-based multitemporal remote sensing image classification[J]. IEEE Transactions on Image Processing, 2018, 27(6): 3036-3048. DOI: 10.1109/TIP.2018.2808767 .
doi: 10.1109/TIP.2018.2808767
|
26 |
Shaharum N S N, Shafri H Z M, Ghani W A W A K, et al. Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms[J]. Remote Sensing Applications: Society and Environment, 2020, 17: 100287. DOI: 10.1016/j.rsase.2020.100287 .
doi: 10.1016/j.rsase.2020.100287
|
27 |
Hsu C W, Chang C C, Lin C J. A practical guide to support vector classification[R]. Department of Computer Science,2003.
|
28 |
Baetens L, Desjardins C, Hagolle O. Validation of copernicus Sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and FMask processors using reference cloud masks generated with a supervised active learning procedure[J]. Remote Sensing, 2019, 11(4): 433. DOI: 10.3390/rs11040433 .
doi: 10.3390/rs11040433
|
29 |
Congalton R G. A review of assessing the accuracy of classifications of remotely sensed data[J]. Remote Sensing of Environment, 1991, 37(1): 35-46. DOI: 10.1016/0034-4257(91)90048-B .
doi: 10.1016/0034-4257(91)90048-B
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|