Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (4): 781-788    DOI: 10.11873/j.issn.1004-0323.2022.4.0781
面向双碳的观测与模拟专栏     
基于AVIRIS高光谱数据的海表甲烷异常识别
孙袁超1(),王正海1(),曾雅琦1,秦昊洋1,周桃勇1,邢学文2
1.中山大学 地球科学与工程学院,广东 广州 510275
2.中国石油勘探开发研究院,北京 100083
Research on Detection of Marine Methane based on AVIRIS Hyperspectral Data
Yuanchao Sun1(),Zhenghai Wang1(),Yaqi Zeng1,Haoyang Qin1,Taoyong Zhou1,Xuewen Xing2
1.School of Earth Sciences and Engineering,Sun Tat-Sen University,Guangzhou 510275,China
2.Research Institute of Petroleum Exploration and Development,Beijing 100083,China
 全文: PDF(4263 KB)   HTML
摘要:

研究海洋表面烃类富集状况在监测海洋环境和探测海底油气资源中具有重要意义,海表渗漏烃中,甲烷是气态烃中最具代表性的组分。为了精准识别海表甲烷异常,研究设计了相应光谱实验,以海水为背景测定甲烷光谱反射率,基于实测数据分析甲烷的光谱特征,运用比值导数光谱法削弱海水背景组分的光谱干扰,提取出甲烷光谱吸收特征波段。研究发现甲烷在1 642—1 672 nm和2 169—2 378 nm波长范围存在光谱吸收,通过比值导数处理后显著增强了其中1 642—1 672 nm和2 169—2 208 nm区间的甲烷吸收特征,在Rebecca等提出的CH4I甲烷反演指数的基础上加入比值导数参数,建立了基于AVIRIS数据的海表甲烷含量指数MI,与甲烷含量的相关系数R2=0.994 2,将其应用于美国加利福利亚州圣芭芭拉海峡Coal Oil Point(COP)烃渗漏区甲烷异常识别,并与CH4I指数和Bradley等提出的AVIRIS CH4指数ζ(L2298/L2058)进行反演效果对比。结果表明:运用MI指数可以有效识别海表甲烷浓度异常,与ζ、CH4I指数反演结果相比,MI指示的甲烷浓度异常分布与ζ指数反演结果更为吻合,效果显著优于CH4I指数反演结果。

关键词: 高光谱油气资源遥感海表甲烷比值导数光谱    
Abstract:

Methane is the most representative component of the gaseous hydrocarbon in the marine hydrocarbon seepage. In order to detect the marine methane anomalies accurately,a methane spectra experiment was designed to obtain hyperspectral data of different methane content in seawater background. Based on the measured data, the spectral characteristics of methane are analyzed. The ratio derivative spectrum method is used to weaken the spectral interference of seawater background components for extracting the absorption characteristic band of methane. The results show that methane has spectral absorption in the wavelength range of 1 642—1 672 nm and 2 169—2 378 nm, and the absorption characteristics of methane in the range of 1 642—1 672 nm and 2 169—2 208 nm are significantly enhanced by ratio derivative treatment. Based on the methane index CH4I, the ratio derivative parameter is added to establish the marine CH4 content index MI for AVIRIS data. The correlation coefficient R2 between MI and methane content is 0.994 2.MI index is applied to the identification of methane anomalies in the hydrocarbon seepage area of the Santa Barbara Channel Coal Oil Point (COP), California, USA. Compared with the inversion results of CH4I index and CH4 index ζ (L2298/L2058). The abnormal distribution of methane concentration indicated by MI is more consistent with the hydrocarbon leakage area, and the results is better than the inversion results of CH4I index.

Key words: Hyperspectral    Remote sensing of oil-gas resources    Marine methane    Derivative of ratio spectroscopy
收稿日期: 2021-04-07 出版日期: 2022-09-28
:  TP79  
基金资助: 国家自然科学基金项目(41572316)
通讯作者: 王正海     E-mail: 18162417165@163.com;wzhengh@mail.sysu.edu.cn
作者简介: 孙袁超(1995-),男,湖南郴州人,硕士研究生,主要从事遥感地质应用研究。E?mail:18162417165@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙袁超
王正海
曾雅琦
秦昊洋
周桃勇
邢学文

引用本文:

孙袁超,王正海,曾雅琦,秦昊洋,周桃勇,邢学文. 基于AVIRIS高光谱数据的海表甲烷异常识别[J]. 遥感技术与应用, 2022, 37(4): 781-788.

Yuanchao Sun,Zhenghai Wang,Yaqi Zeng,Haoyang Qin,Taoyong Zhou,Xuewen Xing. Research on Detection of Marine Methane based on AVIRIS Hyperspectral Data. Remote Sensing Technology and Application, 2022, 37(4): 781-788.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.4.0781        http://www.rsta.ac.cn/CN/Y2022/V37/I4/781

图1  研究区AVIRIS影像
图2  FLAASH大气校正前后海表甲烷光谱曲线
参数名称
光谱范围350—2 500 nm
光谱分辨率

3.5 nm (350—1 000 nm)

10 nm @ 1 500 nm

7 nm @ 2 100 nm

采样间隔1 nm,共2 151个光谱通道
波长重复性0.1 nm
波长精度±0.5 nm
最大扫描速度100 ms
光纤探头视场角25°
表1  PSR-3500 波谱仪参数
图3  实验装置图[12]
图4  重采样后的甲烷波谱反射率
图5  甲烷光谱比值导数曲线图
图6  甲烷光谱反射率及比值导数特征
图7  ζ、CH4I、MI与甲烷含量回归分析
图8  CH4I、MI、ζAVIRIS甲烷异常反演结果
图9  比值导数处理前后甲烷光谱反射率与含量相关性
1 Solomon E A, Kastner M, Macdonald I R, et al. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico[J]. Nature Geoscience, 2009, 2(8): 561-565.
2 Lu Yingcheng, Hu Chuanmin, Sun Shaojie, et al. Overview of optical remote sensing of marine oil spills and hydrocarbon seepage[J]. Journal of Remote Sensing, 2016, 20(5): 1259-1269.
2 陆应诚,胡传民,孙绍杰 等 .海洋溢油与烃渗漏的光学遥感研究进展[J].遥感学报,2016,20(5):1259-1269.
3 Zhang B, Li H Z, Zhong B, et al. The situation,problems and countermeasures for the controls of China’s methane emissions[J]. China Mining Magazine, 2022, 31(2):1-10.
3 张 博, 李蕙竹, 仲 冰,等. 中国甲烷控排面临的形势,问题与对策[J]. 中国矿业, 2022, 31(2):1-10.
4 Etminan M, Myher G, Highwood E J, et al. Radiative forcing of carbon dioxide,methane,and nitrous oxide: A significant revision of the methane radiative forcing[J]. Geophysical Research Letters, 2016, 43(24): 12614-12623.
5 Bradley E S, Leifer I, Roberts D. Long-term monitoring of a marine geologic hydrocarbon source by a coastal air pollution station in Southern California[J]. Atmospheric Environment, 2010, 44(38): 4973-4981.
6 Clark J F, Washburn L, Emery K S. Variability of gas composition and flux intensity in natural marine hydrocarbon seeps[J]. Geo-Marine Letters, 2010, 30(3-4): 389-389.
7 Leifer I, Roberts D, Margolis J, et al. In situ sensing of methane emissions from natural marine hydrocarbon seeps: A potential remote sensing technology[J]. Earth and Planetary Science Letters, 2006, 245(3-4): 509-522.
8 Roberts D A, Bradley E S, Cheung R, et al. Mapping methane emissions from a marine geological seep source using imaging spectrometry[J]. Remote Sensing of Environment, 2010, 114(3): 592-606.
9 Bradley E S, Leifer I, Roberts D A, et al. Detection of marine methane emissions with AVIRIS band ratios[J]. Geophysical Research Letters, 2011, 38(10): 415-421.
10 Roberts D A, Bradley E S, Christopher C F, et al. High resolution mapping of methane emissions from marine and terrestrial sources using a cluster-tuned matched filter technique and imaging spectrometry [J]. Remote Sensing of Environment, 2013, 134(3): 305-318.
11 Scafutto R D M, Werff H V D, Bakker W H, et al. An evaluation of airborne SWIR imaging spectrometers for CH4 mapping: Implications of band positioning, spectral sampling and noise[J]. International Journal of Applied Earth Observation and Geoinformation,2021,94:102233. DOI:10.1016/j.jag. 2020.102233 .
doi: 10.1016/j.jag. 2020.102233
12 Zeng Yaqi, Wang Zhenghai, Xing Xuewen, et al. Hyperspectral quantitative retrieval of methane content in different concentrations in the seawater [J]. Journal of Remote Sensing, 2020, 24(12):1525-1533.
12 曾雅琦,王正海,邢学文,等 .海水背景下不同浓度的甲烷含量高光谱定量反演[J].遥感学报,2020,24(12):1525-1533.
13 Funk C C, Theiler J, Roberts D A, et al. Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 39(7): 1410-1420.
14 Hornafius J S, Quigley D, Luyendyk B P. The sorld's most spectacular marine hydrocarbon seeps (coal oil point, Santa Barbara Channel, California): Quantification of emissions[J]. Journal of Geophysical Research:Oceans, 1999, 104(C9): 20703-20711.
15 Wilson R D, Monaghan P H, Osanik A, et al. Natural marine oil seepage[J]. Science, 1974, 184(4139): 857-865.
16 Leifer I, Kamerling M J, Luyendyk B P, et al. Geologic control of natural marine hydrocarbon seep emissions, coal oil point seep field, California[J]. Geo-Marine Letters, 2010, 30(3-4): 331-338.
17 Washburn L, Clark J F, Kyriakidis P. The spatial scales, distribution, and intensity of natural marine hydrocarbon seeps near coal oil point, California[J]. Marine & Petroleum Geology, 2005, 22(4): 569-578.
18 Clark J F, Washburn L, Hornafius J S, et al. Dissolved hydrocarbon flux from natural marine seeps to the Southern California Bight[J]. Journal of Geophysical Research Oceans, 2000, 105(C5): 11509-11522.
19 Wei Jing, Ming Yanfang, Liu Fujiang. Hyperspectral mineral mapping method based on spectral characteristic parameter combination[J]. Earth Science—Journal of China University Geosciences,2015,40(8):1432-1440.
19 韦晶,明艳芳,刘福江.基于光谱特征参数组合的高光谱数据矿物填图方法[J].地球科学—中国地质大学学报,2015,40(8):1432-1440.
20 Gao L Z, Yang B L, A study on near infrared spectral characteristics of petroleum matter applied to remote sensing of oil and gas resources[J]. Remote Sensing for Land and Resources, 1991,3(4): 9-12,29.
20 高来之,杨柏林 .应用于油气资源遥感的近红外石油物质光谱特征研究[J].国土资源遥感,1991,3(4):9-12,29.
21 Zhang Yu, Wang Yiding, Li Li, et al. The principle and technical analysis of methane detection using infrared absorption spectroscopy [J]. Spectroscopy and Spectral Analysis, 2008(11): 2515-2519.
21 张宇,王一丁,李黎,等 .甲烷红外吸收光谱原理与处理技术分析[J].光谱学与光谱分析,2008(11):2515-2519.
22 Zhao Hengqian, Zhang Lifu, Wu Taixia, et al. Research on the model of spectral unmixing for minerals based on derivative of ratio spectroscopy[J]. Spectroscopy and Spectral Analysis, 2013, 33(1): 172-176.
22 赵恒谦,张立福,吴太夏,等 .比值导数法矿物组分光谱解混模型研究[J].光谱学与光谱分析,2013,33(1):172-176.
23 Lv Shuqiang, Yin Qinli, Hou Miaole, et al. Spectral unmixing of mineral pigment mixture by using derivative of ratio spectroscopy based on the mode[J]. The Journal of Light Scattering, 2017, 29(3): 261-265.
23 吕书强,尹琴丽,侯妙乐,等.基于众数的比值导数法在混合颜料解混中的研究[J].光散射学报,2017,29(3):261-265.
[1] 姜亚楠,张春雷,张欣,徐权威,张舒涛,周锐. 利用提升树模型综合Gabor和LPQ特征进行遥感地物识别[J]. 遥感技术与应用, 2022, 37(2): 515-523.
[2] 徐宏根,刘慧泽,吴柯,占燕婷,林忠. 基于SAM-SCP组合方法的热红外高光谱影像岩性分类[J]. 遥感技术与应用, 2021, 36(6): 1398-1407.
[3] 姜玉峰,齐建国,陈博伟,闫敏,黄龙吉,张丽. 基于无人机高光谱影像和机器学习的红树林树种精细分类[J]. 遥感技术与应用, 2021, 36(6): 1416-1424.
[4] 吴颉,陈楚群,刘叶取. 珠海一号欧比特高光谱数据交叉辐射定标初探[J]. 遥感技术与应用, 2021, 36(4): 791-802.
[5] 段金亮,张瑞,李奎,庞家泰. 一种基于噪声水平估计的扩展线性光谱分解算法[J]. 遥感技术与应用, 2021, 36(4): 820-826.
[6] 胡宜娜,安如,艾泽天,都伟冰. 基于无人机高光谱影像的三江源草种精细识别研究[J]. 遥感技术与应用, 2021, 36(4): 926-935.
[7] 刘鹤,顾玲嘉,任瑞治. 基于无人机遥感技术的森林参数获取研究进展[J]. 遥感技术与应用, 2021, 36(3): 489-501.
[8] 李宝芸,范玉刚,杨明莉. 基于LFDA和GA-ELM的高光谱图像地物识别方法研究[J]. 遥感技术与应用, 2021, 36(3): 587-593.
[9] 阿依努尔·麦提努日null,麦麦提吐尔逊·艾则孜null,麦尔哈巴·图尔贡null,李新国. 吐鲁番盆地葡萄园土壤重金属铅含量高光谱估算[J]. 遥感技术与应用, 2021, 36(2): 362-371.
[10] 邵文静,孙伟伟,杨刚. 高光谱遥感影像纹理特征提取的对比分析[J]. 遥感技术与应用, 2021, 36(2): 431-440.
[11] 虞瑶,苏红军,姚文静. 基于Boosting的高光谱遥感切空间协同表示集成学习方法[J]. 遥感技术与应用, 2020, 35(3): 634-644.
[12] 王飞龙,王福民,胡景辉,谢莉莉,谢京凯. 基于相对光谱变量的无人机遥感水稻估产及产量制图[J]. 遥感技术与应用, 2020, 35(2): 458-468.
[13] 左成欢,赵辽英,陆海强,厉小润. 由粗到细的高光谱图像多端元光谱混合分析[J]. 遥感技术与应用, 2019, 34(6): 1305-1314.
[14] 许宁,胡玉新,耿修瑞. 凸体几何光谱解混研究进展及若干问题浅析[J]. 遥感技术与应用, 2019, 34(5): 1028-1039.
[15] 贺军亮,崔军丽,张淑媛,李仁杰,查勇. 基于偏最小二乘的土壤重金属铜含量高光谱估算[J]. 遥感技术与应用, 2019, 34(5): 998-1004.