Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (4): 854-864    DOI: 10.11873/j.issn.1004-0323.2022.4.0854
蒸散发遥感专栏     
库布齐沙漠典型沙地人工林蒸散对比分析
马启民1(),龙银平1,汤世宇1,贾晓鹏2
1.成都信息工程大学 资源环境学院,四川 成都 610225
2.中国科学院西北生态环境资源研究院 沙漠与沙漠化重点实验室,甘肃 兰州 730000
Comparative Analysis of Evapotranspiration of Typical Sandy Plantations in the Hobq Desert
Qimin Ma1(),Yinping Long1,Shiyu Tang1,Xiaopeng Jia2
1.College of Resources and Environment,Chengdu University of Information Technology,Chengdu 610225,China
2.Key Laboratory of Desert and Desertification,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
 全文: PDF(5060 KB)   HTML
摘要:

人工造林使库布齐沙漠的生态快速逆转,深入理解沙地人工林的蒸散特征,对改善现有人工林的经营管理和开展人工林建设具有重要意义。利用Landsat 8、MODIS产品、气象观测资料等数据,通过基于能量平衡的SEBAL模型和MODIS MOD16蒸散产品获取库布齐沙漠典型林场2014年7月14日、7月30日、8月15日、9月7日的地表蒸散量,并采用波文比系统相关数据对估算的结果进行验证。得到以下结果:与波文比观测系统的蒸散相比,SEBAL模型反演的蒸散整体偏大,日蒸散分别多1.06、1.71、1.19、2.65 mm,两者的决定系数达0.827;MODIS MOD16产品的蒸散整体偏小,日蒸散分别少0.13、0.32、0.18、0.95 mm,两者的决定系数达0.823;在沙漠人工林斑块区域且植被类型较单一的情况下,MODIS MOD16的蒸散结果要好于SEBAL模型反演的蒸散,两者在空间分布上基本保持一致;林场蒸散较大的区域主要分布在中部和南部,而北部区域蒸散相对较小。研究结果可为其他沙地斑块人工林获取蒸散提供参考。

关键词: 沙地人工林波文比SEBAL模型MODIS MOD16蒸散    
Abstract:

Artificial afforestation has rapidly restored the ecology of the Hobq Desert. A thorough understanding of the characteristics of Evapotranspiration (ET) in sand plantations is of great significance for improving the management of existing plantations and developing plantation construction. By using Landsat8, MODIS products, and meteorological observations, the surface ET of a typical forest farm in the Hobq Desert on July 14, July 30, August 15 and September 7, 2014 was respectively obtained by the energy balance based SEBAL (The Surface Energy Balance Algorithm for Land) model and the MODIS MOD16 ET product. The results were verified by the Bowen ratio system. The results are as follows: Compared with the ET of the Bowen ratio observation system, the overall ET estimated by the SEBAL model was larger. The daily ET were overestimated by 1.06, 1.71, 1.19, and 2.65 mm on the above mentioned four days, with the determination coefficient of 0.827. ET from the MODIS MOD16 product was relatively smaller, and the daily ET were underestimated by 0.13, 0.32, 0.18 and 0.95 mm, respectively, with the determination coefficient of 0.823. In the case of desert plantation patches with single vegetation type, the ET obtained by the MODIS MOD16 was better than retrieved by the SEBAL model, but the spatial distribution was basically consistent. Areas with higher ET were mainly distributed in the central and south parts of the farm, while ET in the northern part was relatively smaller. The results can provide reference for other sandy plantations to obtain evapotranspiration.

Key words: Sand plantation    Bowen ratio    SEBAL model    MODIS MOD16    Evapotranspiration(ET)
收稿日期: 2021-08-11 出版日期: 2022-09-28
:  S161.4  
基金资助: 成都信息工程大学人才引进项目(KYTZ202113);四川省重点研发计划项目(2020YFS0356);科技兴蒙重点专项(KJXM?EEDS?2020006)
作者简介: 马启民(1985-),男,新疆额敏人,讲师,主要从事陆面生态水文过程研究。E?mail: mqm@cuit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马启民
龙银平
汤世宇
贾晓鹏

引用本文:

马启民,龙银平,汤世宇,贾晓鹏. 库布齐沙漠典型沙地人工林蒸散对比分析[J]. 遥感技术与应用, 2022, 37(4): 854-864.

Qimin Ma,Yinping Long,Shiyu Tang,Xiaopeng Jia. Comparative Analysis of Evapotranspiration of Typical Sandy Plantations in the Hobq Desert. Remote Sensing Technology and Application, 2022, 37(4): 854-864.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.4.0854        http://www.rsta.ac.cn/CN/Y2022/V37/I4/854

图1  研究区示意图
观测要素仪器传感器型号安装高度仪器精度或误差

气温和相对湿度

风速风向

太阳总辐射

四分量辐射仪

土壤热通量

土壤温度和湿度

降雨

RHT2nl-02

AN3-03、WD1-03

PYP-PA

NR01

HPF-01L25

Trime-PICO32

TE525MML12

1 m、2 m

2 m、10 m

1 m

1 m

-5 cm

-5 cm

10 m

±0.1℃, ±2%

±0.01 m·s-1,±0.3

10—40 μV/Wm -2

5—15 μV/Wm -2

50 μV/Wm -2

±0.2℃, ±1%

0.1 mm

表1  站点观测要素
图2  3种蒸散结果对比
蒸散(mm)/ 时间2014年7月14日2014年7月30日2014年8月15日2014年9月7日
SEBAL模型2.893.042.184.67
波文比观测0.831.330.992.02
MODIS ET0.701.010.811.07
表2  反演结果与观测值对比
图3  波文比与MODIS ET对比
图4  SEBAL模型反演的蒸散
图5  MODIS ET产品蒸散
图6  500 m分辨率的Landsat 8反演蒸散
图7  MODIS MOD13Q1与Landsat 8反演的NDVI
1 Zhang Zhihui, Wang Weizhen, Ma Mingguo, et al. Data processing and product analysis of EDDY covariance FLUX data for WATER[J]. Remote Sensing Technology and Application, 2010, 25(6):788-796.
1 张智慧, 王维真, 马明国, 等. 黑河综合遥感联合试验涡动相关通量数据处理及产品分析[J]. 遥感技术与应用, 2010, 25(6):788-796.
2 Pan X, Liu Y, Fan X, et al. Two energy balance closure approaches: Applications and comparisons over an oasis-desert ecotone[J]. Journal of Arid Land, 2017, 9(1): 51-64.
3 Yang Guangchao, Zhu Zhongli, Tan Lei, et al. Analysis on evapotranspiration of maize field measured by lysimeters in Huailai[J]. Plateau Meteorology, 2015, 34(4): 1095-1106.
3 杨光超, 朱忠礼, 谭磊, 等. 怀来地区蒸渗仪测定玉米田蒸散发分析[J]. 高原气象, 2015, 34(4): 1095-1106.
4 Gabriela P, Milan F, Bram V K, et al. Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: A comparison of micrometeorological methods[J]. Agricultural Water Management, 2018, 209(41): 249-263.
5 Wang K, Dickinson R E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability[J]. Reviews of Geophysics,2012, 50(2). DOI:10.1029/2011RG000373 .
doi: 10.1029/2011RG000373
6 Li Xüliang, Yang Lixiao, Xuefeng Xü, et al. Analysis of evapotranspiration pattern by SEBAL model during the growing season in the agro-pastoral ecotone in Northwest China[J]. Acta Ecologica Sinica, 2020,40(7): 2175-2185.
6 李旭亮, 杨礼箫, 胥学峰, 等. 基于SEBAL模型的西北农牧交错带生长季蒸散发估算及变化特征分析[J]. 生态学报, 2020, 40(7): 2175-2185.
7 Zhang Zhengyu, Li Xiaoyu, Sun Hao. Influence of different surface albedo calculation methods on the simulation of evapotranspiration from the Sangong River basin in the arid region of Xinjiang[J]. Acta Ecologica Sinica, 2019, 39(8): 271-281.
7 张振宇, 李小玉, 孙浩. 地表反照率不同计算方法对干旱区流域蒸散反演结果的影响——以新疆三工河流域为例[J]. 生态学报, 2019, 39(8): 271-281.
8 Li Jia, Xin Xiaozhou, Peng Zhiqing, et al. Remote sensing products of terrestrial evapotranspiration: Comparison and outlook[J]. Remote Sensing Technology and Application, 2021, 36(1): 103-120.
8 李佳, 辛晓洲, 彭志晴, 等. 地表蒸散发遥感产品比较与分析[J]. 遥感技术与应用, 2021, 36(1): 103-120.
9 Fan Yayun, Guo Yuchuan, Lu Gang, et al. Vegetation ecological water requirement of Ebinur lake watershed[J]. Journal of Desert Research, 2018, 38(4): 865-871.
9 范亚云, 郭玉川, 卢刚, 等. 艾比湖流域植被生态需水量[J]. 中国沙漠, 2018, 38(4): 865-871.
10 Zhou Huizhen, Liu Shaomin, Yu Xiaofei, et al. Study on estimation of regional evapotranspiration by remote sensing in the Mu Us sandland——A case study of Wushen county in inner Mongolia[J]. Progress in Geography, 2006, 25(4):79-87.
10 周会珍, 刘绍民, 于小飞, 等. 毛乌素沙地蒸散量的遥感研究——以内蒙古乌审旗为例[J]. 地理科学进展, 2006, 25(4):79-87.
11 Qian Duo, Zha Tianshan, Wu Bing, et al. Spatio-temporal distribution characteristics of reference crop evapotranspiration in the Mu Us desert[J]. Acta Ecologica Sinica, 2017, 37(6): 1966-1974.
11 钱多, 查天山, 吴斌, 等. 毛乌素沙地参考作物蒸散量变化特征与成因分析[J]. 生态学报, 2017, 37(6): 1966-1974.
12 Dai Haiyan, Liang Xianli, Bao Qiuli, et al. Variation characteristics and influencing factors of potential evapotranspiration in Mu Us and Khorchin sandy land in recent 46 years[J]. Journal of Northwest Forestry University,2019,34(2):8-13.
12 代海燕, 梁显丽, 宝秋利, 等. 近46年毛乌素沙地和科尔沁沙地潜在蒸散量的变化特征及影响因子分析[J]. 西北林学院学报, 2019, 34(2): 8-13.
13 Liu Jing, Liu Tiejun, Du Xiaofeng, et al. Simulation on spatio-temporal stability of ET based on MOD16A2 in Mu Us sandy land[J].Agricultural Research in the Arid Areas, 2020, 38(2): 249-256.
13 刘静, 刘铁军, 杜晓峰, 等. 基于MOD16A2的毛乌素沙地实际蒸散量时空稳定性模拟[J]. 干旱地区农业研究, 2020,38(2): 249-256.
14 Bao Y Z, Duan L M, Tong X, et al. Simulation and partition evapotranspiration for the representative landform-soil-vegetation formations in Horqin sandy land, China[J]. Theoretical and Applied Climatology, 2020, 140(3): 1221-1232.
15 Bao Yongzhi, Liu Tingxi, Duan Limin, et al. Simulation of evapotranspiration for the mobile and semi-mobile dunes in the Horqin sandy land using the Shuttleworth-Wallace model[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 867-876.
15 包永志, 刘廷玺, 段利民, 等. 基于Shuttleworth-Wallace模型的科尔沁沙地流动半流动沙丘蒸散发模拟[J]. 应用生态学报, 2019, 30(3): 867-876.
16 Wang Juan, He Shanfeng, Qiu Lanlan, et al. Soil moisture dynamics and evapotranspiration of caragana microphylla communities in growing season on Horqin sandy land[J]. Bulletin of Soil and Water Conservation, 2009,29(6): 103-106.
16 王娟, 贺山峰, 邱兰兰, 等. 科尔沁沙地小叶锦鸡儿群落生长季土壤水分动态和蒸散量估算[J]. 水土保持通报, 2009, 29(6): 103-106.
17 Huo Wen, Hu Shunqi. A variation study on calculation of evapotranspiration over constructed green land natural sandy land[J]. Acta Meteorologica Sinica,2019,77(5):949-959.
17 霍文, 胡顺起. 人工绿地与自然沙地蒸散发的计算与变异研究[J]. 气象学报, 2019, 77(5): 949-959.
18 Wang Yongdong, Li Shengyu, Xu Xinwen, et al. Applicability of the hargraeves method in estimating feference evapotranspiration in the Taklamakan desert Hinterland[J]. Journal of Desert Research,2013,33(2):367-372.
18 王永东, 李生宇, 徐新文, 等. Hargreaves公式在塔克拉玛干沙漠腹地的适用性[J]. 中国沙漠, 2013,33(2): 367-372.
19 Duan Chunfeng, Miao Qilong, Cao Wen. Spatio-temporal variations of potential evapotranspiration around Taklimakan desert and the main influencing factors[J]. Journal of Desert Research, 2012, 32(6): 1723-1730.
19 段春锋, 缪启龙, 曹雯. 塔克拉玛干沙漠周边地区潜在蒸散时空演变特征及其主要影响因素[J]. 中国沙漠, 2012, 32(6): 1723-1730.
20 Li Chuanjin, Hu Shunjun, Zheng Bowen. Energy balance and evapotranspiration characteristics of Haloxylon ammodendron community in the southern margin of the Gurbantunggut Desert[J]. Acta Ecologica Sinica,2020,41(1):92-100.
20 李传金, 胡顺军, 郑博文. 古尔班通古特沙漠南缘梭梭(Haloxylon ammodendron)群落能量平衡及蒸散特征[J]. 生态学报, 2020, 41(1): 92-100.
21 Wang Zefeng, Hu Shunjun, Li Hao, et al. Evapotranspiration characteristics of Haloxylon ammodendron community in interdune lowland at the southern edge of Gurbantunggut desert[J]. Arid Land Geography, 2018, 41(6): 163-169.
21 王泽锋, 胡顺军, 李浩. 古尔班通古特沙漠南缘丘间地梭梭群落蒸散特征[J]. 干旱区地理, 2018, 41(6): 163-169.
22 Wang Xinping, Li Xinrong, Kang Ersi, et al. Experiment on evapotranspiration of xerophyte communities in a revegetated desert zone[J]. Journal of Desert Research, 2002, 22(4): 363-377.
22 王新平, 李新荣, 康尔泗, 等. 沙坡头地区固沙植物油蒿,柠条蒸散状况的研究[J]. 中国沙漠, 2002, 22(4): 363-377.
23 Zhang Zhishan, Li Xirong, He Mingzhu, et al. Transpiration of artificially vegetated desert areas determined by non-weighing lysimeter and effects on gross transpiration[J]. Acta Prataculturae Sinica, 2006, 15(6): 32-37.
23 张志山, 李新荣, 何明珠, 等. 沙漠人工植被蒸渗池测定及蒸腾量推算[J]. 草业学报, 2006, 15(6): 32-37.
24 Liu Yanwei, Zhu Zhongyuan, Wu Yun, et al. Comparison of evapotranspiration of the natural vegetation in the Otindag sandy area using two calculation methods[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(11): 84-88.
24 刘艳伟, 朱仲元, 乌云, 等. 浑善达克沙地天然植被蒸散量两种计算方法的比较[J]. 农业机械学报, 2010, 41(11): 84-88.
25 Ma Qimin, Wang Haibing, Jia Xiaopeng. The radiation characteristics of artificial Caragana korshinskii shrub land in the Hobq desert, China[J]. Journal of Desert Research, 2021, 41(5): 52-59.
25 马启民 王海兵, 贾晓鹏. 库布齐沙漠人工柠条(Caragana korshinskii)林地表辐射特征[J]. 中国沙漠, 2021, 41(5): 52-59.
26 Qiao Mudan, Jiang Ying, Fan Linet al. Benefit evaluation of ecological forest in Erdos Forest Farm[J]. Liaoning Forestry Science and Technology, 2016, 15(5): 8-13.
26 乔牡丹, 姜英, 范琳, 等. 鄂尔多斯市造林总场生态公益林效益评估[J]. 辽宁林业科技, 2016, 15(5): 8-13.
27 Fu Jihai, Xu Liling, Wang Alatancang. On the forest resources protection and development in Ordos city Afforestation Total Field[J]. Inner Mongolia Forestry Investigation and Design, 2013(1): 10-11.
27 付纪梅, 许立玲, 王阿拉坦仓. 浅谈鄂尔多斯市造林总场森林资源保护与发展[J]. 内蒙古林业调查设计, 2013(1):10-11.
28 Bastiaanssen W G M, Menenti M, Feddes R A, et al. A remote sensing Surface Energy Balance Algorithm for Land (SEBAL). Part1. Formulation[J]. Journal of Hydrology, 1998, 212:198-212.
29 Bastiaanssen W G M, Pelgrum H, Wang J, et al. A remote sensing Surface Energy Balance Algorithm for Land(SEBAL): Part 2: Validation[J]. Journal of Hydrology, 1998, 213:213-229.
30 Li Gen. Estimating evaportranspiration in Yingtan agricultural watershed using SEBAL and SEB[D]. Nanjing:Nanjing University of Information Science and Technology, 2014.
30 李根. 基于SEBAL和SEBS模型的鹰潭小流域蒸散发估算研究[D]. 南京:南京信息工程大学, 2014.
31 Zhang Jie, Zhang Qiang, Huang Jianping. Application of aerodynamic resistance arithmetic in semi-arid region of China and retrival from remote sensing[J]. Plateau Meteorology, 2010, 29(3):662-670.
31 张杰, 张强, 黄建平. 空气动力学阻抗算法在半干旱区的应用比较和遥感反演[J]. 高原气象, 2010, 29(3):662-670.
32 Zhang L, Lemeur R, Goutorbe J P. A one-layer resistance model for estimating regional evapotranspiration using remote sensing data[J]. Agricultural and Forest Meteorology, 1995, 77(3): 241-261.
33 Bowen I S. The ratio of heat losses by conduction and evaporation from any water surface[J]. Physical Review, 1926, 27(6): 779-787.
34 Du J, Song K S. Validation of global evapotranspiration product (MOD16) using FLUX tower data from Panjin coastal wetland[J]. Northeast China: Chinese Geographical Science, 2018, 28(3): 420–429.
35 Souza V, Roberti D R, Ruhoff A L, et al. Evaluation of MOD16 algorithm over irrigated rice paddy using FLUX tower measurements in Southern Brazil[J]. Water, 2019, 11(9): 1911. DOI:10.3390/w11091911 .
doi: 10.3390/w11091911
36 Aguilar A L, Flores H, Crespo G, et al. Performance assessment of MOD16 in evapotranspiration evaluation in Northwestern Mexico[J]. Water,2018,10(7): 901. DOI:10.3390/w10070901 .
doi: 10.3390/w10070901
37 Yu Wenying, Ji Ruipeng, Xu Dezeng, et al. Daily evapotranspiration estimation of Panjin wetland based on SEBAL model and its distribution characteristics[J]. Science of Soil and Water Conservation, 2017, 15(5):8-15.
37 于文颖, 纪瑞鹏, 徐德增, 等. 基于SEBAL模型的盘锦湿地日蒸散估算及其分布特征[J]. 中国水土保持科学, 2017, 15(5):8-15.
38 Zeng Lihong, Song Kaishan, Zhang Bai, et al. Analysis of evapotranspiration characteristics for different land comver types over Songnen plain based on remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(9):233-242.
38 曾丽红,宋开山,张柏,等. 松嫩平原不同地表覆盖蒸散特征的遥感研究[J]. 农业工程学报, 2010, 26(9):233-242.
39 Cheng Minghan, Hao Zhongyong, Li Binbin, et al. Daily evapotranspiration in Beijing: The regional distribution law based on SEBAL model[J]. Chinese Agricultural Science Bulletin, 2019,35(14): 101-108.
39 程明瀚, 郝仲勇, 李斌斌, 等. 基于SEBAL模型的北京市日蒸散发区域分布规律[J]. 中国农学通报, 2019,35(14): 101-108.
40 Liang Wentao, Yin Hang, Han Zhenhua, et al. Temporal and spatial variation analysis of evapotranspiration in Tabu river basin based on remote sensing[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2021,42(1): 1-11.
40 梁文涛 尹航, 韩振华, 等. 基于遥感的塔布河流域蒸散发时空变化分析[J]. 内蒙古农业大学学报, 2021,42(1): 1-11.
41 Zhou Ti, Peng Zhiqing, Xin Xiaozhou, et al. Remote sensing research of evapotranspiration over heterogeneous surfaces: A review[J]. Journal of Remote Sensing, 2016, 20(2): 257-277.
41 周倜, 彭志晴, 辛晓洲, 等. 非均匀地表蒸散遥感研究综述[J]. 遥感学报, 2016, 20(2): 257-277.
42 Zhang Yongqiang, Kong Dongdong, Zhang Xuanze, et al. Impacts of vegetation changes on global evapotranspiration in the period 2003—2017[J]. Acta Geographica Sinica, 2021, 76(3): 584-594.
42 张永强, 孔冬冬, 张选泽, 等. 2003—2017年植被变化对全球陆面蒸散发的影响[J]. 地理学报, 2021, 76(3): 584-594.
43 Mu Q, Heinsch F A, Zhao M, et al. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 2007, 111(4): 519-536.
44 Ma Q M, Long Y P, Jia X P, et al. Vegetation response to climatic variation and human activities on the Ordos Plateau from 2000 to 2016[J]. Environmental Earth Sciences, 2019, 78(24): 709. DOI:10.1007/s12665-019-8732-z .
doi: 10.1007/s12665-019-8732-z
[1] 孟莹,姜鹏,董巍. 基于遥感的地表蒸散发研究进展[J]. 遥感技术与应用, 2022, 37(4): 839-853.
[2] 赵天玮,朱文彬,裴亮,宝康妮. 三江源蒸散发遥感估算及其时空分布特征研究[J]. 遥感技术与应用, 2022, 37(1): 137-147.
[3] 徐艳豪,丁忠昊,宋立生. TSEB模型在复杂下垫面下模拟结果比较研究[J]. 遥感技术与应用, 2022, 37(1): 85-93.
[4] 刘莹,朱秀芳,徐昆,陈令仪,郭锐. 干旱对灌溉和雨养农田生态系统生产力的影响对比分析[J]. 遥感技术与应用, 2021, 36(2): 381-390.
[5] 李佳,辛晓洲,彭志晴,李小军. 地表蒸散发遥感产品比较与分析[J]. 遥感技术与应用, 2021, 36(1): 103-120.
[6] 熊育久,冯房观,方奕舟,邱国玉,赵少华,姚云军. 蒸散发遥感反演产品应用关键问题浅议[J]. 遥感技术与应用, 2021, 36(1): 121-131.
[7] 郭梦辉,季亚南,柯樱海,陈少辉. 土地利用变化下北京市热通量的时空演变[J]. 遥感技术与应用, 2020, 35(5): 1218-1225.
[8] 卢静, 贾立, 郑超磊, 胡光成. 遥感水分收支对区域水资源估算潜能[J]. 遥感技术与应用, 2019, 34(3): 630-638.
[9] 王丽娟,郭铌,王玮,芦亚玲,沙莎. 基于TESEBS模型估算高原地区地表蒸散发[J]. 遥感技术与应用, 2017, 32(3): 507-513.
[10] 赵泽斌,晋 锐,田伟,亢健,苏阳. 基于SiB2模型的土壤水分降尺度指标的适用性研究[J]. 遥感技术与应用, 2017, 32(2): 195-205.
[11] 杨永民,李璐,庞治国,路京选. 基于理论参数空间的遥感蒸散模型构建及验证[J]. 遥感技术与应用, 2016, 31(2): 324-331.
[12] 李琴,陈曦,包安明,徐征和,赵强. 基于SEBS模型干旱区蒸散发量研究[J]. 遥感技术与应用, 2014, 29(2): 195-201.
[13] 拉巴,除多,德吉央宗. 基于SEBS模型的藏北那曲蒸散量研究[J]. 遥感技术与应用, 2012, 27(6): 919-926.
[14] 李 新,刘 强,柳钦火,王 建,马明国,肖 青,车 涛,晋 锐,冉有华. 黑河综合遥感联合试验研究进展:水文与生态参量遥感反演与估算[J]. 遥感技术与应用, 2012, 27(5): 650-662.
[15] 李贺,王红,孔岩,李玲. 基于TSEB模型的黄河三角洲蒸散量估算[J]. 遥感技术与应用, 2012, 27(1): 58-67.