Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (4): 888-896    DOI: 10.11873/j.issn.1004-0323.2022.4.0888
蒸散发遥感专栏     
基于GLASS数据的青藏高原2001—2018年蒸散发时空变化分析
蔡俊飞1,2(),赵伟1(),杨梦娇1,2,詹琪琪1,2,付浩1,3,何坤龙1,4
1.中国科学院水利部成都山地灾害与环境研究所,四川 成都 610041
2.中国科学院大学,北京 100049
3.成都理工大学地球科学学院,四川 成都 610059
4.西华大学能源与动力工程学院,四川 成都 610039
Spatiotemporal Changes of Evapotranspiration on the Qinghai-Tibet Plateau from 2001 to 2018 based on GLASS Data
Junfei Cai1,2(),Wei Zhao1(),Mengjiao Yang1,2,Qiqi Zhan1,2,Hao Fu1,3,Kunlong He1,4
1.Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610041,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
3.College of Earth Sciences,Chengdu University of Technology,Chengdu 610059,China
4.School of energy and power,Xihua University,Chengdu 610039,China
 全文: PDF(4878 KB)   HTML
摘要:

准确认知青藏高原蒸散发时空变化特征,为当地可持续农业的水资源规划及理解高原气候变化具有重要现实意义。研究基于GLASS陆表潜热通量产品,采用Mann-Kendall趋势分析方法,结合青藏高原生态地理分区方案,分析了2001—2018年青藏高原蒸散发的时空变化特征及其与气温、降水和植被的关系。结果表明:①GLASS ET产品可以较好地表征青藏高原蒸散发的时空分布特征;②青藏高原多年平均蒸散发为296.52 mm,整体上呈现出东南高西北低的空间格局,其中东喜马拉雅南翼最高(690.94 mm),柴达木盆地最低(163.47 mm);③近18 a来,青藏高原蒸散发年际变化呈波动性上升,只有东喜马拉雅南翼在下降;④研究期间,青藏高原蒸散发以显著性增长趋势为主,占47.44%,主要位于高原东部边缘和中西部腹地,呈显著性减小趋势的地区占3.82%,主要集中于东喜马拉雅南翼;⑤蒸散发的空间分布在干旱区与气温呈负相关,在湿润区呈正相关,与降水空间格局总体呈正相关;⑥蒸散发与NDVI的空间分布呈较好的正相关,与NDVI的变化趋势相关性较为复杂,大部分呈正相关,小部分呈负相关。

关键词: 蒸散发青藏高原时空变化趋势分析GLASS    
Abstract:

It is of great practical significance for the local sustainable agricultural water resources planning and to understand the plateau climate change to study the characteristics of the spatiotemporal changes of evapotranspiration in the Qinghai-Tibet Plateau. Based on the GLASS land surface latent heat flux product to analyze the characteristics of the spatiotemporal changes of evapotranspiration and its relationship with temperature, precipitation, and vegetation in the Qinghai-Tibet Plateau from 2001 to 2018, with the Mann-Kendall trend analysis method, in consideration of China's ecogeographical divisions. The results showed that: ①GLASS ET can reasonably simulate the distribution characteristics of evapotranspiration over the Qinghai-Tibet Plateau. ②The multi-year annual average evapotranspiration in the Qinghai-Tibet Plateau is 296.52mm, with higher values in the southeast but lower values in the northwest, the southern wing of the Eastern Himalayas is the highest (690.94 mm) and the Qaidam Basin is the lowest (163.47 mm). ③The inter-annual variation of evapotranspiration in the Qinghai-Tibet Plateau has increased volatility, and only the southern flank of the Eastern Himalayas has been declining in the past 18 years. ④During the study period, the evapotranspiration of the Qinghai-Tibet Plateau with a substantial increase trend, accounting for 47.44%, mainly located at the eastern edge of the plateau and the Midwestern hinterland; with a significant decreasing trend accounted for 3.82%, mainly concentrated in the southern wing of the Eastern Himalayas. ⑤The spatial distribution of evapotranspiration is negatively correlated with temperature in arid areas, and positively correlated with humid areas; it is generally positively correlated with the spatial pattern of precipitation. ⑥Evapotranspiration has a good positive correlation with the spatial distribution of NDVI; The correlation with the change trend of NDVI is more complicated, mostly positively correlated, and a small part are negatively correlated.

Key words: Evapotranspiration    Qinghai-Tibet Plateau    Spatiotemporal variation    Trend analysis    GLASS
收稿日期: 2021-12-26 出版日期: 2022-09-28
:  P333  
基金资助: 第二次青藏高原综合科学考察研究项目(2019QZKK0404);国家自然科学基金项目(42071349);中国科学院“西部之光”西部青年学者A类项目,四川省科技计划(2020JDJQ0003┫项目)
通讯作者: 赵伟     E-mail: caijunfei20@mails.ucas.ac.cn;zhaow@imde.ac.cn
作者简介: 蔡俊飞(1996-),男,重庆人,硕士研究生,主要从事山地地表水循环遥感研究。E?mail: caijunfei20@mails.ucas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蔡俊飞
赵伟
杨梦娇
詹琪琪
付浩
何坤龙

引用本文:

蔡俊飞,赵伟,杨梦娇,詹琪琪,付浩,何坤龙. 基于GLASS数据的青藏高原2001—2018年蒸散发时空变化分析[J]. 遥感技术与应用, 2022, 37(4): 888-896.

Junfei Cai,Wei Zhao,Mengjiao Yang,Qiqi Zhan,Hao Fu,Kunlong He. Spatiotemporal Changes of Evapotranspiration on the Qinghai-Tibet Plateau from 2001 to 2018 based on GLASS Data. Remote Sensing Technology and Application, 2022, 37(4): 888-896.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.4.0888        http://www.rsta.ac.cn/CN/Y2022/V37/I4/888

温度带干湿地区自然区
V中亚热带A 湿润地区VA6东喜马拉雅南翼
HI高原亚寒带B 半湿润地区HIB1果洛那曲丘状高原
C 半干旱地区HIC1青南高原宽谷
HIC2羌塘高原湖盆
D 干旱地区HID1昆仑高山高原
HII高原温带A/B 湿润/半湿润地区HIIA/B1川西藏东高山深谷
C 半干旱地区HIIC1青东祁连山地
HIIC2藏南山地
D 干旱地区HIID1柴达木盆地
HIID2昆仑山北翼
HIID3阿里地区
表1  青藏高原主要生态地理分区
图1  Annual ET均值与GLASS ET均值比较
图2  2001—2018年青藏高原多年年均ET审图号:GS(2020)4618
生态地理区ET最小值/mmET最大值/mmET平均值/mm
HIID189.00430.24163.47
HIID2109.02336.47191.72
HID1154.15355.15194.69
HIC2111.20520.25240.72
HIID3175.62457.26254.30
HIC1173.12436.57261.35
HIIC2250.42569. 00342.85
HIIC1179.94546.86345.63
HIB1273.12491.38359.81
HIIA/B1329.40612.76427.28
VA6427. 001 184.23690.94
表2  2001—2018年青藏高原各生态地理区多年年均ET最小值、最大值及平均值
图3  2001—2018年青藏高原及各生态地理区ET年际变化
图4  2001—2018年青藏高原ET变化趋势及变化速率审图号:GS(2020)4618
图5  近18年青藏高原多年年均气温和年均降水审图号:GS(2020)4618
图6  近18 a青藏高原多年年均NDVI及变化趋势审图号:GS(2020)4618
1 Wang K C, Dickinson RE. A review of global terrestrial evapotranspiration:Observation,modeling,climatology,and climatic variability[J]. Reviews of Geophysics,2012,50(2):000373. DOI:10. 1029/2011RG000373 .
doi: 10. 1029/2011RG000373
2 Jung M, Reichstein M, Ciais P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature,2010,467(7318):951-954. DOI: 10.1038/ nature09396 .
doi: 10.1038/ nature09396
3 Li Z L, Tang R, Wan Z, et al. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data[J].Sensors,2009,9(5):3801-3853.DOI:10.3390/ s90503801 .
doi: 10.3390/ s90503801
4 Qiu J.China:The third pole[J].Nature News,2008,454(7203): 393-396. DOI: 10.1038/454393a .
doi: 10.1038/454393a
5 Li T, Chen Y Z, Han L J, et al. Shortened duration and reduced area of frozen soil in the Northern Hemisphere[J]. The Innovation,2021,2(3):100146.DOI:10.1016/j.xinn. 2021. 100146 .
doi: 10.1016/j.xinn. 2021. 100146
6 Chen Deliang, Xu Baiqing, Yao Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau [J]. Chinese Science Bulletin, 2015, 60(32):3025-3035.
6 陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估:过去、现在与未来[J]. 科学通报,2015,60(32):3025-3035.
7 Yang M, Zhao W, Zhan Q, et al. Spatiotemporal patterns of land surface temperature change in the Tibetan Plateau based on MODIS/Terra daily product from 2000 to 2018[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14:6501-6514. DOI:10.1109/JSTARS. 2021.3089851 .
doi: 10.1109/JSTARS. 2021.3089851
8 Immerzeel W W, Van Beek L P, M F Js Bierkens. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984):1382-1385. DOI: 10.1126/science.11831 .
doi: 10.1126/science.11831
9 Xie G, Li J F, Wang S Q, et al. Bridging the knowledge gap on the evolution of the Asian monsoon during 26–16 Ma[J]. The Innovation,2021,2(2):100110. DOI:10.1016/j.xinn. 2021.100110 .
doi: 10.1016/j.xinn. 2021.100110
10 Wang L, Good S P, Caylor K K. Global synthesis of vegetation control on evapotranspiration partitioning[J]. Geophysical Research Letters 2014,41(19):6753-6757. DOI: 10.1002/2014GL061439 .
doi: 10.1002/2014GL061439
11 Liang S, Cheng J, Jia K, et al. The Global Land Surface Satellite (GLASS) product suite[J]. Bulletin of the American Meteorological Society,2021,102(2):E323-E337.DOI:10. 1175/BAMS-D-18-0341.1 .
doi: 10. 1175/BAMS-D-18-0341.1
12 Song L, Liu S, Kustas W P, et al. Monitoring and validating spatially and temporally continuous daily evaporation and transpiration at river basin scale[J]. Remote Sensing of Environment, 2018, 219:72-88. DOI: 10.1016/j.rse.2018.10.002 .
doi: 10.1016/j.rse.2018.10.002
13 Zheng Du. Study on the Eco-geographical region system of China[M]. Beijing: The Commercial Press,2008.
13 郑度.中国生态地理区域系统研究[M].北京: 商务印书馆,2008.
14 Mu Q, Zhao M, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment,2011,115(8):1781-1800. DOI: 10. 1016/j.rse.2011.02.019 .
doi: 10. 1016/j.rse.2011.02.019
15 Yuan W, Liu S, Yu G, et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 2010,114(7):1416-1431. DOI:10.1016/j.rse.2010.01.022 .
doi: 10.1016/j.rse.2010.01.022
16 Fisher J B, Tu K P, Baldocchi D D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites[J]. Remote Sensing of Environment, 2008, 112(3):901-919. DOI: 10.1016/j.rse.2007.06.025 .
doi: 10.1016/j.rse.2007.06.025
17 Yao Y, Liang S, Cheng J, et al. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm[J]. Agricultural and Forest Meteorology,2013,171-172:187-202.DOI:10.1016/j.agrformet. 2012. 11.016 .
doi: 10.1016/j.agrformet. 2012. 11.016
18 Wang K C, Dickinson R E, Wild M, et al. Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. Model development[J]. Journal of Geophysical Research,2010,115(D20):013847. DOI: 10.1029/ 2010JD013847 .
doi: 10.1029/ 2010JD013847
19 Yao Y, Liang S, Li X, et al. Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(8):4521-4545. DOI: 10.1002/2013JD020864 .
doi: 10.1002/2013JD020864
20 Yao Y, Liang S, Li X, et al. A satellite-based hybrid algorithm to determine the Priestley–Taylor parameter for global terrestrial latent heat flux estimation across multiple biomes[J]. Remote Sensing of Environment, 2015, 165:216-233. DOI: 10.1016/j.rse.2015.05.013 .
doi: 10.1016/j.rse.2015.05.013
21 Mu Q, Zhao M, Running S W J R. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. 2011, 115(8):1781-1800. DOI: 10.1016/j.rse.2011.02.019 .
doi: 10.1016/j.rse.2011.02.019
22 Niu Z, He H, Zhu G, et al. A spatial-temporal continuous dataset of the transpiration to evapotranspiration ratio in China from 1981-2015[J]. Scientific Data, 2020,7(1):1-13. DOI: 10.1038/s41597-020-00693-x .
doi: 10.1038/s41597-020-00693-x
23 Niu Z, He H, Zhu G, et al. An increasing trend in the ratio of transpiration to total terrestrial evapotranspiration in China from 1982 to 2015 caused by greening and warming[J]. Agricultural and Forest Meteorology, 2019, 279:107701. DOI: 10.1016/j.agrformet.2019.107701 .
doi: 10.1016/j.agrformet.2019.107701
24 Hamed K H, Rao A R. A modified Mann-Kendall trend test for autocorrelated data[J]. Journal of Hydrology, 1998. 204(1-4):182-196. DOI: 10.1016/S0022-1694(97)00125-X .
doi: 10.1016/S0022-1694(97)00125-X
25 Kendall M G. Rank correlation methods[M]. London:Grffin,1975.
26 Yang X, Huang P.Restored relationship between ENSO and In-dian summer monsoon rainfall around 1999/2000[J].The Inno-vation,2021,2(2):100102. DOI:10.1016/j.xinn.2021.100102 .
doi: 10.1016/j.xinn.2021.100102
27 Han C, Ma Y, Wang B, et al. Long-term variations in actual evapotranspiration over the Tibetan Plateau[J]. Earth System Science Data, 2021, 13(7):3513-3524. DOI: 10.5194/essd-13-3513-2021 .
doi: 10.5194/essd-13-3513-2021
28 An Chunchun.Monitoring of vegetation phenology based on MODIS data and its response to climate change in Tibetan Plateau,China[D].Chengdu:University of Chinese Academy of Sciences(Institute of Mountain Hazards and Environment),2019.
28 安淳淳.基于MODIS数据的青藏高原植被物候监测及其对气候变化的响应研究[D].成都: 中国科学院大学(中国科学院水利部成都山地灾害与环境研究所),2019.
29 Chen J, Yan F, Lu Q.Spatiotemporal variation of vegetation on the Qinghai-Tibet Plateau and the influence of climatic factors and human activities on vegetation trend(2000—2019)[J].Remote Sensing,2020,12(19).DOI:10.3390/rs 12193150 .
doi: 10.3390/rs 12193150
[1] 孟莹,姜鹏,董巍. 基于遥感的地表蒸散发研究进展[J]. 遥感技术与应用, 2022, 37(4): 839-853.
[2] 廖廓,彭中,姜亚珍,党皓飞. 基于深度神经网络联合AMSR2和MODIS数据估算全球蒸散发研究[J]. 遥感技术与应用, 2022, 37(4): 878-887.
[3] 崔泽鹏,王志慧,肖培青,申震洲,常晓格,石永磊,马力. 2000—2018年黄河上中游地区蒸散发年际时空变化及其影响因素分析[J]. 遥感技术与应用, 2022, 37(4): 865-877.
[4] 严致荣,刘良云,竞霞. 中国区域2007~2018植被荧光时空变化与气候响应模式研究[J]. 遥感技术与应用, 2022, 37(3): 702-712.
[5] 刘立越,苗则朗,吴立新. 基于MODIS数据的亚马逊热带雨林火灾时空变化规律研究[J]. 遥感技术与应用, 2022, 37(3): 721-730.
[6] 傅笛,金鑫,金彦香,毛旭锋,翟婧雅. 巴音河流域高时空分辨率叶面积指数数据集[J]. 遥感技术与应用, 2022, 37(2): 499-506.
[7] 马佳培,李弘毅. 改进频率分布和风速纠正的青藏高原格点降水数据集(1980~2009年)[J]. 遥感技术与应用, 2022, 37(2): 507-514.
[8] 赵天玮,朱文彬,裴亮,宝康妮. 三江源蒸散发遥感估算及其时空分布特征研究[J]. 遥感技术与应用, 2022, 37(1): 137-147.
[9] 徐艳豪,丁忠昊,宋立生. TSEB模型在复杂下垫面下模拟结果比较研究[J]. 遥感技术与应用, 2022, 37(1): 85-93.
[10] 除多,郑照军,拉巴卓玛,次丹玉珍. 基于Landsat-8 OLI的青藏高原IMS 4 km雪冰产品精度评价[J]. 遥感技术与应用, 2021, 36(6): 1223-1235.
[11] 杨奥莉,郑东海,文军,陆宣承,杨越,符晴. 青藏高原L波段微波辐射观测与土壤水分反演研究进展[J]. 遥感技术与应用, 2021, 36(5): 983-996.
[12] 盛夏,石玉立,丁海勇. 青藏高原GPM降水数据空间降尺度研究[J]. 遥感技术与应用, 2021, 36(3): 571-580.
[13] 李佳,辛晓洲,彭志晴,李小军. 地表蒸散发遥感产品比较与分析[J]. 遥感技术与应用, 2021, 36(1): 103-120.
[14] 熊育久,冯房观,方奕舟,邱国玉,赵少华,姚云军. 蒸散发遥感反演产品应用关键问题浅议[J]. 遥感技术与应用, 2021, 36(1): 121-131.
[15] 王浩天,汪源,袁强强. 2008~2016年MODIS多角度大气校正气溶胶产品在中国的时空分布及变化趋势[J]. 遥感技术与应用, 2021, 36(1): 217-228.