Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (4): 929-937    DOI: 10.11873/j.issn.1004-0323.2022.4.0929
灯光遥感专栏     
利用夜间灯光分析胡焕庸线两侧社会经济发展不均衡状况
邹丹1(),周玉科2(),林金堂1,陈天宇3,吴志杰1,王洪1
1.龙岩学院 资源工程学院,福建 龙岩 364012
2.中国科学院地理科学与资源研究所 生态系统网络观测与模拟重点实验室,北京 100101
3.苏州科技大学 地理科学与测绘工程学院,江苏 苏州 215004
Analysis of Inequality of Socioeconomic Development on both Sides of Hu Huanyong Line Using Nighttime Light
Dan Zou1(),Yuke Zhou2(),Jintang Lin1,Tianyu Chen3,Zhijie Wu1,Hong Wang1
1.School of Resource Engineering,Longyan University,Longyan 364012,China
2.Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic and Nature Resources Research,Chinese Academy of Sciences,Beijing 100101,China
3.School of Geographic Science and Surveying engineering,Suzhou University of Science and Technology,Suzhou 215004,China
 全文: PDF(5091 KB)   HTML
摘要:

利用遥感技术评估我国东西部社会经济发展情况及差异,对我国制定发展战略和具体实施具有重大意义。研究利用夜间灯光遥感数据表征社会经济发展状况,在县一级分析了胡焕庸线两侧的发展速率、重心转移情况;结合遥感植被指数引入“灯光/植被”比值指数,分析经济发展和绿色空间的动态权衡;将海岸带不同距离缓冲区灯光与西部灯光比重进行对比;利用基尼系数测度东西部发展的不均衡状况。结果表明:全国、东西部社会经济快速发展,灯光重心基本稳定,分别在开封市、淮北市、阿拉善南部地区小范围漂移; 我国海岸带聚集了高强度的社会经济活动,30 km缓冲区内灯光总量基本已经与西部灯光总量相当;东西部基尼系数逐年降低;比值指数的空间自相关分析探测到沿海灯光趋于饱和,相邻的内陆县域为潜在的高强度开发空间。研究结果说明了我国东西部内部经济发展差异仍然显著,但是均衡性趋好,东部发展应进入更加注重绿化维持的阶段,内陆地区也将逐渐进入快速发展阶段。研究结论对我国乡村振兴重点地区的精准识别、生态治理修复规划等都具有借鉴意义。

关键词: 夜间灯光胡焕庸线发展不均衡基尼系数海岸带    
Abstract:

Using remote sensing technology to evaluate the social and economic development situation and differences between East and west China is of great significance for China to formulate development strategies and implement them. In this paper, we use remote sensing-derived nighttime light data to characterize the social and economic development, and analyze the development rate and gravity center transfer of East and West (on both sides of Hu Huanyong line) at the county level. Combined with remote sensing vegetation index, the ratio index of "light/vegetation" is introduced to analyze the dynamic trade-off between economic development and green space. The proportion of light in different distance buffer zone of coastal zone was compared with that in the West. Gini coefficient is used to measure the unbalanced development of the East and the West. The results show that: with the rapid development of social economy in the whole country, the East and the west, the lighting center is basically stable, drifting in a small range in Kaifeng City, Huaibei City and the south of Alashan; The coastal zone of China has gathered high-intensity social and economic activities, and the total amount of light in the 30 km buffer zone is almost equal to that in the West; The Gini coefficient in the East and West decreased year by year. The spatial correlation analysis of the ratio index shows that the areas along the Bohai Sea, Yellow Sea and East China Sea are high-intensity development areas tending to be saturated, the adjacent inland counties are potential high-intensity development areas, and the Qinghai Tibet and southwest regions are weak development areas. The results show that the internal economic development difference between the East and the west is still significant, but the balance is getting better. The eastern development should pay more attention to the maintenance of greening trend. Affected by the spillover of coastline development results, the inland areas will gradually enter the stage of rapid development. The conclusions of this study can be used for reference in accurate identification of key areas of Rural Revitalization and ecological restoration planning in China.

Key words: Nighttime light    Hu huanyong line    Development inequality    Gini coefficient    Coastal zone
收稿日期: 2021-06-24 出版日期: 2022-09-28
:  F24  
基金资助: 福建省自然科学基金项目(2020J01355);福建省教育厅中青年科技类项目(JAT200609);龙岩学院博士启动项目(LB82018038)
通讯作者: 周玉科     E-mail: chinazoudan@126.com;zhouyk@igsnrr.ac.cn
作者简介: 邹 丹(1986-),女,山东兖州人,讲师,主要从事空间数据挖掘、资源环境遥感研究与测绘教学。E?mail:chinazoudan@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邹丹
周玉科
林金堂
陈天宇
吴志杰
王洪

引用本文:

邹丹,周玉科,林金堂,陈天宇,吴志杰,王洪. 利用夜间灯光分析胡焕庸线两侧社会经济发展不均衡状况[J]. 遥感技术与应用, 2022, 37(4): 929-937.

Dan Zou,Yuke Zhou,Jintang Lin,Tianyu Chen,Zhijie Wu,Hong Wang. Analysis of Inequality of Socioeconomic Development on both Sides of Hu Huanyong Line Using Nighttime Light. Remote Sensing Technology and Application, 2022, 37(4): 929-937.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.4.0929        http://www.rsta.ac.cn/CN/Y2022/V37/I4/929

图1  多年平均(1992—2015年)夜间灯光和NDVI数据空间分布审图号:GS(2016)2889
图2  全国、胡线东部和西部的夜间灯光和NDVI的多年变化趋势分析
图3  全国、东部、西部的经济重心变化轨迹图审图号:GS(2016)2889
表1  海岸带灯光与胡线西部县域灯光对比分析表
图4  基尼系数变化曲线
图5  NTL/NDVI 变化斜率审图号:GS(2016)2889
图6  NTL/NDVI指数聚集和热点/冷点分布图 审图号:GS(2016)2889
1 Wu Ruijun, Zhu Baoshu. The unbalanced distribution of population in China and the stability of Heihe-Tengchong Line[J]. Chinese Journal of Population Science, 2016,36(1):14–24.
1 吴瑞君, 朱宝树. 中国人口的非均衡分布与“胡焕庸线”的稳定性[J]. 中国人口科学,2016,36(1):14–24.
2 Zhong Maochu. How to characterize regional ecological carrying capacity and ecological environment quality?: on the redistribution of the ecological carrying capacity of the East, Central and West with the meaning of Hu Huanyong Line[J]. Journal of China University of Geosciences (Social Sciences Edition), 2016, 16(1): 1–9.
2 钟茂初. 如何表征区域生态承载力与生态环境质量?——兼论以胡焕庸线生态承载力涵义重新划分东中西部[J]. 中国地质大学学报: 社会科学版, 2016, 16(1): 1–9.
3 Wang Kaiyong, Deng Yu . Can new urbanization break through the Hu Huanyong Line? Further discussion on the geographical connotations of the Hu Huanyong Line[J]. Geographical Research, 2016, 35(5): 825–835.
3 王开泳, 邓羽. 新型城镇化能否突破 “胡焕庸线”——兼论 “胡焕庸线” 的地理学内涵[J]. 地理研究, 2016, 35(5): 825–835.
4 Li Jiaming, Lu Dadao, Xu Chengdong, et al. Spatial heterogeneity and its changes of population on the two sides of Hu Line[J]. Acta Geographica Sinica, 2017, 72(1): 148-160.
4 李佳洺, 陆大道, 徐成东,等. 胡焕庸线两侧人口的空间分异性及其变化[J]. 地理学报, 2017, 72(1): 148-160.
5 Chen Mingxing, Li Yang, Gong Yinghua, et al. The population distribution and trend of urbanization pattern on two sides of Hu Huanyong population line: A tentative response to Premier Li Keqiang[J]. Acta Geographica Sinica, 2016,71(2): 179-193.
5 陈明星, 李扬, 龚颖华,等. 胡焕庸线两侧的人口分布与城镇化格局趋势——尝试回答李克强总理之问[J]. 地理学报, 2016,71(2):179-193.
6 Qi Wei, Liu Shenghe, Zhao Meifeng. Study on the stability of Hu Line and different spatial patterns of population growth on its both sides[J]. Acta Geographica Sinica, 2015, 70(4): 551-566.
6 戚伟, 刘盛和, 赵美风. “胡焕庸线” 的稳定性及其两侧人口集疏模式差异[J]. 地理学报, 2015, 70(4): 551-566.
7 Dou Y, Liu Z, He C, et al. Urban land extraction using VIIRS nighttime light data: An evaluation of three popular methods[J]. Remote Sensing,2017,9(2). DOI:10.3390/rs 9020175 .
doi: 10.3390/rs 9020175
8 Ma T, Zhou C, Pei T, et al. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities[J]. Remote Sensing of Environment, 2012, 124: 99–107. DOI:10.1016/j.rse.2012.04.018 .
doi: 10.1016/j.rse.2012.04.018
9 Liu Y, Wang Y, Peng J, et al. Correlations between urbanization and vegetation degradation across the world’s metropolises using DMSP/OLS nighttime light data[J]. Remote Sensing, 2015, 7(2): 2067–2088. DOI:10.3390/rs70202067 .
doi: 10.3390/rs70202067
10 Li X, Xu H, Chen X, et al. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China[J]. Remote Sensing, 2013, 5(6): 3057–3081. DOI:10.3390/rs5063057 .
doi: 10.3390/rs5063057
11 ShiK, Yu B, Huang Y, et al. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS data[J]. Remote Sensing, 2014, 6(2): 1705–1724. DOI:10.3390/rs6021705 .
doi: 10.3390/rs6021705
12 Li X, Chen F, Chen X. Satellite-observed nighttime light variation as evidence for global armed conflicts[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2013,6(5):2302-2315. DOI:10.1109/JSTARS. 2013.2241021 .
doi: 10.1109/JSTARS. 2013.2241021
13 Jiang W, He G, Long T, et al. Ongoing conflict makes Yemen dark: From the perspective of nighttime light[J]. Remote Sensing, 2017, 9(8). DOI:10.3390/rs9080798 .
doi: 10.3390/rs9080798
14 DaiZ, Hu Y, Zhao G. The suitability of different nighttime light data for GDP estimation at different spatial scales and regional levels[J]. Sustainability (Switzerland), 2017, 9(2). DOI:10.3390/su9020305 .
doi: 10.3390/su9020305
15 Ji X, Li X, He Y, et al. A simple method to improve es-timates of county-level economics in China using night-time light data and GDP growth rate[J]. ISPRS International Journal of Geo-Information,2019,8(9). DOI:10.3390/ijgi 8090419 .
doi: 10.3390/ijgi 8090419
16 Wu J, Wang Z, Li W, et al. Exploring factors affecting the relationship between light consumption and GDP based on DMSP/OLS nighttime satellite imagery[J]. Remote Sensing of Environment,2013,134:111-119. DOI:10.1016/j.rse. 2013.03.001 .
doi: 10.1016/j.rse. 2013.03.001
17 Liu J, DengY, Wang Y, et al. Urban nighttime leisure space mapping with nighttime light images and POI data[J]. Remote Sensing, 2020, 12(3). DOI:10.3390/rs12030541 .
doi: 10.3390/rs12030541
18 He X, Zhou C, Zhang J, et al. Using wavelet transforms to fuse nighttime light data and POI big data to extract urban built-up areas[J]. Remote Sensing, 2020, 12(23): 1–20. DOI:10.3390/rs12233887 .
doi: 10.3390/rs12233887
19 Shi K, Chang Z, Chen Z, et al. Identifying and evaluating poverty using multisource remote sensing and Point Of Interest (POI) data: A case study of Chongqing, China[J]. Journal of Cleaner Production,2020:255. DOI:10.1016/j.jclepro. 2020. 120245 .
doi: 10.1016/j.jclepro. 2020. 120245
20 Li Tingting. Study on temporal and spatial evolution of urban green space and its correlation with ecological environment effect[D]. Chongqing: Southwest University, 2018.
20 李婷婷. 城市绿色空间时空演变及其对生态环境效应的关联性研究[D]. 重庆: 西南大学, 2018.
21 Su Lei, Li Junying, Fan Mengxue. Review of urban green space spatial-temporal evolution and its ecological effects based on remote sensing[J]. Yunan Geographic Environment Research, 2018,30(6):1-8.
21 苏雷,李俊英,樊梦雪.基于遥感的城市绿色空间时空演变与生态效应研究综述[J].云南地理环境研究,2018,30(6):1-8.
22 Max Finlayson C. Millennium ecosystem assessment[J]. The Wetland Book: I: Structure and Function, Management, and Methods,2018:355-359. DOI:10.1007/978-90-481-9659-3_81 .
doi: 10.1007/978-90-481-9659-3_81
23 Mulkey D, Hackett W B, Gordon J R. Assessing economic activity in coastal areas: A shift‐share approach[J]. Coastal Zone Management Journal, 1982, 10(1–2): 79–96. DOI:10.1080/08920758209361911 .
doi: 10.1080/08920758209361911
24 Li X, Zhou Y, Zhao M, et al. A harmonized global nighttime light dataset 1992-2018[J]. Scientific Data, 2020,7(1):1-9. DOI:10.6084/m9.figshare.12312125 .
doi: 10.6084/m9.figshare.12312125
25 Zhao M, Cheng W, Zhou C, et al. Assessing spatiotemporal characteristics of urbanization dynamics in Southeast Asia using time series of DMSP/OLS nighttime light data[J]. Remote Sensing, 2018, 10(1). DOI:10.3390/rs10010047 .
doi: 10.3390/rs10010047
26 Pinzon J E, Tucker C J. GIMMS 3g NDVI set and global NDVI trends[J/OL]. Second Yamal Land-Cover Land-Use Change Workshop, 2010(March). .
27 Anselin L. Local Indicators of Spatial Association—LISA[J]. Geographical Analysis, 1995,27(2):93-115. DOI:10.1111/j.1538-4632.1995.tb00338.x .
doi: 10.1111/j.1538-4632.1995.tb00338.x
28 Zhang C, Luo L, Xu W, et al. Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland[J]. Science of the Total Environment, 2008, 398(1-3): 212-221. DOI:10.1016/j.scitotenv.2008.03.011 .
doi: 10.1016/j.scitotenv.2008.03.011
29 Gastwirth J L. The Estimation of the Lorenz Curve and Gini Index[J]. The Review of Economics and Statistics, 1972, 54(3): 306. DOI:10.2307/1937992 .
doi: 10.2307/1937992
30 Wang X, Xiao J, Li X, et al. No trends in spring and autumn phenology during the global warming hiatus[J]. Nature Communications, 2019, 10(1): 2389. DOI:10.1038/s41467-019-10235-8 .
doi: 10.1038/s41467-019-10235-8
[1] 王晗,胡自远,李付全,周玉科. 基于夜间灯光的2000—2018年成渝地区城市化过程研究[J]. 遥感技术与应用, 2022, 37(4): 897-907.
[2] 陈吉臻,张君,薛亮. 基于夜间灯光数据的陕西省县域相对贫困水平时空差异分析[J]. 遥感技术与应用, 2022, 37(4): 908-918.
[3] 魏石梅,潘竟虎. 基于夜间灯光和微博签到数据的郑州市城市空间结构识别[J]. 遥感技术与应用, 2022, 37(3): 771-780.
[4] 刘贤赵,杨旭. 夜间灯光数据估算中国省域碳排放与国际碳数据库分配的碳排放比较[J]. 遥感技术与应用, 2022, 37(2): 319-332.
[5] 周雷雷,郑诗军,尹捷,张雅琼,黄文江,王心源,王岩,张赫林,陈俊杰,彭代亮. 以“胡焕庸线”为界的中国东西部净初级生产力变化分析[J]. 遥感技术与应用, 2021, 36(4): 916-925.
[6] 路春燕,雷依凡,苏颖,黄雨菲,刘明月,贾明明. 基于面向对象—深度学习的闽东南低海拔海岸带地区湿地动态遥感分析[J]. 遥感技术与应用, 2021, 36(4): 713-727.
[7] 张爱华,潘耀忠,明艳芳,王金云. 多源信息耦合的GDP空间化研究—以北京市为例[J]. 遥感技术与应用, 2021, 36(2): 463-472.
[8] 贺蕾,潘竟虎,董磊磊. 基于遥感和微博签到数据的住房空置空间识别[J]. 遥感技术与应用, 2020, 35(4): 820-831.
[9] 白贺庭, 马明国, 阎然, 刘康甯, 隽楚涵. 基于夜间灯光数据的重庆市城市扩张研究[J]. 遥感技术与应用, 2019, 34(1): 216-224.
[10] 周玉科,高锡章,倪希亮. 利用夜间灯光数据分析我国社会经济发展的区域不均衡特征[J]. 遥感技术与应用, 2017, 32(6): 1107-1113.
[11] 赵峰,汪云甲,闫世勇. 时序InSAR技术地表沉降监测结果可靠性及沉降梯度分析[J]. 遥感技术与应用, 2015, 30(5): 969-979.
[12] 刘鹏,杜云艳. 基于遥感案例推理的海岸带养殖信息提取[J]. 遥感技术与应用, 2012, 27(6): 857-864.
[13] 陈 勇. 海岸带滩涂资源遥感应用研究进展[J]. 遥感技术与应用, 2012, 27(2): 296-304.
[14] 张震,马安青,李福建,刘乐军. 基于ArcEngine的我国海岸带地质灾害信息管理系统的设计与研究[J]. 遥感技术与应用, 2011, 26(4): 533-537.
[15] 舒松,余柏蒗 ,吴健平,刘红星. 基于夜间灯光数据的城市建成区提取方法评价与应用[J]. 遥感技术与应用, 2011, 26(2): 169-176.