Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (4): 953-960    DOI: 10.11873/j.issn.1004-0323.2022.4.0953
数据与图像处理     
CFOSAT散射计几何定位验证与精度初步评估
云日升1,2(),刁宁辉3,崔海英1,2,高畅畅1,2,4
1.中国科学院国家空间科学中心 微波遥感技术重点实验室,北京 100190
2.中国科学院国家空间科学中心,北京 100190
3.自然资源部国家卫星海洋应用中心,北京 100081
4.中国科学院大学,北京 100049
Verification of CFOSAT Scatterometer Geolocation and Preliminary Evaluation of Geolocation Accuracy
Risheng Yun1,2(),Ninghui Diao3,Haiying Cui1,2,Changchang Gao1,2,4
1.Key Laboratory of Microwave Remote Sensing,Chinese Academy of Sciences,Beijing 100190,China
2.National Space Science Center,Chinese Academy Sciences,Beijing 100190,China
3.National Satellite Ocean Application Service,Ministry of Natural Resources,Beijing 100081,China
4.University of Chinses Academy of Sciences,Beijing 100049,China
 全文: PDF(3458 KB)   HTML
摘要:

采用STK软件对中法海洋卫星(CFOSAT)散射计几何定位算法进行了验证。针对CFOSAT散射计扇形波束扫描观测体制,分别就扇形波束扫描散射计几何定位原型算法、包含天线安装误差的完整几何定位算法利用STK进行了详细验证。结果表明了CFOSAT扇形波束散射计几何定位算法的准确性,与STK几何定位结果偏差在100 m以内。在此基础上,结合有源定标器实验数据,对CFOSAT实际观测数据几何定位参数进行了校正,给出了CFOSAT散射计几何定位精度的初步评估。

关键词: 中法海洋卫星扇形波束扫描散射计几何定位天线安装矩阵精度评估    
Abstract:

STK software is used to verify the algorithm of CFOSAT scatterometer geolocation. For CFOSAT scatterometer fan-beam scanning observation mode, the prototype geolocation algorithm and the complete geolocation algorithm including antenna installation error are verified in detail by STK. The results show that the bias between the results of CFOSAT fan-beam scatterometer geolocation algorithm and STK geometric location is within 100 meters. On this basis, combined with the experimental data of calibration ground station, the geolocation parameters of CFOSAT actual observation data are corrected, and the preliminary evaluation of the geolocation accuracy of CFOSAT scatterometer is given.

Key words: Chinese French Oceanography Satellite(CFOSAT)    Rotating Fan-beam Scatterometer (RFSCAT)    Geolocation    Antenna mounting matrix    Accuracy evaluation
收稿日期: 2021-01-25 出版日期: 2022-09-28
:  TP732.1  
基金资助: “十二五”观测卫星地面系统CFOSAT散射计预处理课题(Y7C01KAJ10)
作者简介: 云日升(1974-),男,内蒙古和林格尔人,副研究员,主要从事微波遥感系统仿真与数据预处理研究。E?mail:yunrisheng@mirslab.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
云日升
刁宁辉
崔海英
高畅畅

引用本文:

云日升,刁宁辉,崔海英,高畅畅. CFOSAT散射计几何定位验证与精度初步评估[J]. 遥感技术与应用, 2022, 37(4): 953-960.

Risheng Yun,Ninghui Diao,Haiying Cui,Changchang Gao. Verification of CFOSAT Scatterometer Geolocation and Preliminary Evaluation of Geolocation Accuracy. Remote Sensing Technology and Application, 2022, 37(4): 953-960.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.4.0953        http://www.rsta.ac.cn/CN/Y2022/V37/I4/953

系统参数轨道参数

载频/GHz

发射功率/W

脉冲宽度/ms

脉冲重复频率/Hz

俯仰角范围/°

极化方式

13.256

120

1.35

1.35

26—46

H/V

半长轴/km

偏心率

近地点幅角/°

倾角/°

升交点赤经/°

降交点地方时

6 891.984

0.001 23

90

97.528 1

322.67

7:00 AM

表1  CFOSAT散射计主要工作参数
图1  CFOSAT散射计几何定位算法流程
图2  利用STK对CFOSAT散射计几何定位验证流程
图3  几何定位原型算法多脉冲验证
图4  CFOSAT散射计几何定位原型算法定位偏差
图5  CFOSAT散射计天线阵面观测几何
图6  CFOSAT散射计天线方位角偏差随俯仰角变化

STK俯仰角

STK方位角补偿

H-极化/°

STK方位角补偿

V-极化/°

20

25

30

35

40

45

50

0.438 1

0.281 6

0.174 6

0.095 7

0.034 4

-0.015 4

-0.057 2

-0.400 0

-0.247 3

-0.142 9

-0.065 9

-0.006 0

0.042 5

0.083 3

表2  STK随俯仰角变化的方位角补偿值
图7  CFOSAT散射计几何定位算法与STK定位结果偏差
图8  CFOSAT散射计条带几何定位与STK定位结果偏差
轨道号升/降轨H-极化/mV-极化/m

3406

3428

3436

3497

3519

3625

3633

D

A

D

D

A

A

D

5 970.67

4 847.42

3 838.96

7 913.61

7 634.05

4 512.14

6 678.34

7 414.05

4 656.31

4 789.44

4 656.94

6 257.86

6 898.44

7 768.24

平均值5 913.596 063.04
表3  利用外定标数据估计散射计定位精度
图9  CFOSAT散射计后向散射系数数据海岸线匹配
1 Hauser H, Tison C, Amiot T, et al. SWIM: The first spaceborne wave scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 3000-3014. DOI: 10.1109/TGRS.2017.2658672 .
doi: 10.1109/TGRS.2017.2658672
2 Lin C C, Rommen B, Wilson J J W, et al. An analysis of a rotating, range-gated, fanbeam spaceborne scatterometer concept[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2114-2121. DOI: 10.1109/36.868870 .
doi: 10.1109/36.868870
3 Dong Xiaolong, Zhu Di, Zhang Kuo, et al. Orbit performances validation for CFOSAT scatterometer[J]. Chinese Journal of Space Science, 2020, 40(3): 425-431.
3 董晓龙,朱迪,张阔,等. 中法海洋卫星微波散射计在轨性能验证,空间科学学报, 2020, 40 (3): 425-431.
4 Liu J, Lin W, Dong X,et al. First results from the rotating fan beam scatterometer onboard CFOSAT[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(12):8793-8806. DOI: 10.1109/TGRS.2020.2990708 .
doi: 10.1109/TGRS.2020.2990708
5 Yun R, Xu X, Dong X, et al., The processing and simulation of the CFOSAT RFSCAT[C]∥ IEEE International Geoscience and Remote Sensing Symposium(IGARSS). Milan, 2015:5332-5335. DOI:10.1109/IGARSS. 2015.7327039 .
doi: 10.1109/IGARSS. 2015.7327039
6 Diao Ninghui, Liu Jianqiang, Sun Congrong, et al. Satellite orbit calculation based on SGP4 model[J]. Remote Sensing Information, 2012,27(4): 64-70.
6 刁宁辉,刘建强,孙从容,等. 基于SGP4模型的卫星轨道计算,遥感信息,2012,27(4): 64-70.
7 Zhang K, Dong X, Zhu D, et al., Estimation and correction of geolocation errors of the CFOSAT scatterometer using coastline backscatter coefficients[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021,14: 53-61. DOI: 10.1109/JSTARS.2020.3035238 .
doi: 10.1109/JSTARS.2020.3035238
8 Yun R, Xu X, Dong X, et al. Simulation and retrieval of wind of CFOSAT rotating-fan beam SCATterometer[C]∥ IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016:5797-5800. DOI: 10.1109/IGARSS.2016.7730514 .
doi: 10.1109/IGARSS.2016.7730514
9 Yun R, Dong X, Zhang L, et al., CFOSAT Scatterometer Data Level-1 Processing and Preliminary Results[C]∥ IEEE International Geoscience and Remote Sensing Symposium, Yokohama,Japan,2019:8011-8014.DOI:10.1109/IGARSS. 2019.8897758 .
doi: 10.1109/IGARSS. 2019.8897758
10 Lin W M, Dong X L, Portabella M,et al. A perspective on the performance of the CFOSAT fotating fan-beam scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(2):627-639.DOI:10.1109/TGRS.2018.2858852 .
doi: 10.1109/TGRS.2018.2858852
[1] 黄桂平,曹艳萍. TRMM卫星3B43降水数据在黄河流域的精度分析[J]. 遥感技术与应用, 2019, 34(5): 1111-1120.
[2] 刘畅,李震,张平,田帮森,周建民. 基于Google Earth Engine评估新疆西南部MODIS积雪产品[J]. 遥感技术与应用, 2018, 33(4): 584-592.
[3] 刘微微,盛庆红,姬亭,王惠南. 高分辨率卫星遥感影像严格几何定位模型发展综述[J]. 遥感技术与应用, 2011, 26(5): 677-681.
[4] 冉有华,李文君,陈贤章. TM图像土地利用分类精度验证与评估—以定西县为例[J]. 遥感技术与应用, 2003, 18(2): 81-86.