Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (4): 961-970    DOI: 10.11873/j.issn.1004-0323.2022.4.0961
遥感应用     
基于AMSR-E的微波温度植被干旱指数的应用
刘礼杨1,2,3,4,5(),杨雪琴1,2,3,4,5(),陈修治3,苏泳娴2,4,任加顺3,4,黄光庆1,4
1.中国科学院广州地球化学研究所,广东 广州 510640
2.南方海洋科学与工程广东省实验室(广州),广东 广州 511458
3.中山大学大气科学学院,广东 珠海 519082
4.广东省科学院广州地理研究所,广东 广州 510070
5.中国科学院大学,北京 100049
The Application of Microwave Temperature-Vegetation Drought Index (MTVDI) based on the AMSR-E in Amazon Basin
Liyang Liu1,2,3,4,5(),Xueqin Yang1,2,3,4,5(),Xiuzhi Chen3,Yongxian Su2,4,Jiashun Ren3,4,Guangqing Huang1,4
1.Guangzhou Institute of Geochemistry,Chinese Academy of Science,Guangzhou 510640,China
2.Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou),Guangzhou 511458,China
3.School of Atmospheric Sciences,Sun Yat-sen University,Zhuhai 519082,China
4.Guangzhou Institute of Geography,Guangdong Academy of Sciences,Guangzhou 510070,China
5.University;of the Chinese Academy of Sciences,Beijing 100049,China
 全文: PDF(6040 KB)   HTML
摘要:

以热带常绿阔叶林为主的亚马逊流域在全球气候变化的背景下频繁遭受干旱胁迫。但是对于该地区实施长时间序列的干旱监测一直是难点和热点。基于Liu等2017年提出的微波温度—植被干旱指数(Microwave Temperature-Vegetation Drought Index,MTVDI),对亚马逊流域进行了2003—2008年长时间序列的干旱监测,并采用饱和水汽压差(Vapor Pressure Deficit, VPD)、帕尔默干旱指数(Palmer Drought Severity Index, PDSI)、陆地地下水储量(Terrestrial Water Storage, TWS)、气象水分亏缺(Climatological Water Deficit, CWD)对MTVDI进行验证。结果表明:对于整个研究区而言,MTVDI与VPD (R=0.72)和CWD (R=-0.57)相关性较显著,但与TWS和PDSI相关性较弱。总体上,MTVDI能够较好地反映亚马逊地区干旱的季节动态。

关键词: 微波温度-植被干旱指数干旱监测亚马逊流域季节性干旱    
Abstract:

The Amazon basin, dominated by tropical evergreen broad-leaved forests, has frequently encountered drought stress due to the global climate change. The implementation of long-term regional drought monitoring in such areas has always been a serious issue. In this paper, we conducted a long-term drought monitoring of the Amazon basin from 2003 to 2008 based on the Microwave Temperature-Vegetation Drought Index (MTVDI) proposed by Liu et al. in 2017. And the MTVDI was evaluated by using Vapor Pressure Deficit (VPD), Palmer Drought Severity Index (PDSI), Terrestrial Water Storage (TWS) and Climatological Water Deficit (CWD). The results show that: For the whole study area, MTVDI is strongly associated with VPD and CWD (Pearson R are 0.72 and 0.57, respectively). In contrast, weak correlations exist between MTVDI and TWS, CWD. In general, MTVDI has well capacity to monitor drought dynamics in Amazon.

Key words: Microwave Temperature-Vegetation Drought Index    Drought monitoring    Amazon Basin    Seasonal drought
收稿日期: 2021-08-11 出版日期: 2022-09-28
:  P426.616  
基金资助: 国家自然科学基金面上项目(31971458)
通讯作者: 杨雪琴     E-mail: liuliyang18@mails.ucas.ac.cn;yangxueqin20@mails.ucas.ac.cn
作者简介: 刘礼杨(1992-),男,四川泸州人,博士研究生,主要从事微波遥感应用与遥感干旱监测研究。E?mail: liuliyang18@mails.ucas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘礼杨
杨雪琴
陈修治
苏泳娴
任加顺
黄光庆

引用本文:

刘礼杨,杨雪琴,陈修治,苏泳娴,任加顺,黄光庆. 基于AMSR-E的微波温度植被干旱指数的应用[J]. 遥感技术与应用, 2022, 37(4): 961-970.

Liyang Liu,Xueqin Yang,Xiuzhi Chen,Yongxian Su,Jiashun Ren,Guangqing Huang. The Application of Microwave Temperature-Vegetation Drought Index (MTVDI) based on the AMSR-E in Amazon Basin. Remote Sensing Technology and Application, 2022, 37(4): 961-970.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.4.0961        http://www.rsta.ac.cn/CN/Y2022/V37/I4/961

图1  研究区示意图
图2  MTVDI计算流程图
图3  温度-植被指数三角空间示意图
图4  亚马逊流域各月干旱程度百分比统计
图5  亚马逊流域MTVDI季节性时空分布
图6  研究区内MTVDI与4种干旱指标的季节性变化
图7  MTVDI与干旱指标的相关性的空间分布
图8  MTVDI与植被长势的相关性空间分布
图9  湿季与干季植被长势差异的空间格局
1 Chen X, Maignan F, Viovy N, et al. Novel representation of leaf phenology improves simulation of Amazonian evergreen forest photosynthesis in a land surface model[J]. Journal of Advances in Modeling Earth Systems,2020,12(1):e2018MS 001565. DOI: 10.1029/2018MS001565 .
doi: 10.1029/2018MS001565
2 Espinoza J C, Ronchail J, Guyot J L, et al. Climate variability and extreme drought in the upper Solimões River (western Amazon Basin): Understanding the exceptional 2010 drought[J]. Geophysical Research Letters, 2011, 38(13). DOI: 10.1029/2011GL047862 .
doi: 10.1029/2011GL047862
3 Nepstad D, Lefebvre P, Lopes da Silva U, et al. Amazon drought and its implications for forest flammability and tree growth: A basin‐wide analysis[J]. Global Change Biology, 2004,10(5):704-717. DOI: 10.1111/j.1529-8817. 2003. 00772.x .
doi: 10.1111/j.1529-8817. 2003. 00772.x
4 Lewis S L, Brando P M, Phillips O L, et al. The 2010 amazon drought[J]. Science, 2011, 331(6017): 554-554. DOI: 10.1126/science.1200807 .
doi: 10.1126/science.1200807
5 Doughty C E, Metcalfe D B, Girardin C A J, et al. Drought impact on forest carbon dynamics and fluxes in Amazonia[J]. Nature,2015,519(7541):78-82. DOI: 10.1038/nature14213 .
doi: 10.1038/nature14213
6 Fan L, Wigneron J P, Ciais P, et al. Satellite-observed pantropical carbon dynamics[J]. Nature plants, 2019, 5(9): 944-951. DOI: 10.1038/s41477-019-0478-9 .
doi: 10.1038/s41477-019-0478-9
7 da Costa A C L, Galbraith D, Almeida S, et al. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest[J]. New Phytologist,2010,187(3):579-591. DOI: 10.1111/j.1469-8137. 2010.03309.x .
doi: 10.1111/j.1469-8137. 2010.03309.x
8 Phillips O L, Aragão L E O C, Lewis S L, et al. Drought sensitivity of the Amazon rainforest[J]. Science, 2009, 323(5919): 1344-1347. DOI: 10.1126/science.1164033 .
doi: 10.1126/science.1164033
9 Marengo J A. Characteristics and spatio-temporal variability of the Amazon River Basin water budget[J]. Climate Dynamics, 2005, 24(1): 11-22. DOI: 10.1007/s00382-004-0461-6
doi: 10.1007/s00382-004-0461-6
10 Bannari A, Morin D, Bonn F, et al. A review of vegetation indices[J]. Remote Sensing Reviews, 1995, 13(1-2): 95-120. DOI: 10.1080/02757259509532298 .
doi: 10.1080/02757259509532298
11 Kogan F N. Application of vegetation index and brightness temperature for drought detection[J]. Advances in space research, 1995, 15(11): 91-100. DOI: 10.1016/0273-1177(95)00079-T .
doi: 10.1016/0273-1177(95)00079-T
12 Kogan F N. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data[J]. Bulletin of the American Meteorological Society, 1995, 76(5): 655-668. DOI: 10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2 .
doi: 10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2
13 Chen Weiying, Xiao Qianguang, Sheng Yongwei. Application of the anomaly vegetation index to monitoring heavy drought in 1992[J]. Remote Sensing of Environment China, 1994, 9(2): 106-112.
13 陈维英, 肖乾广,盛永伟. 距平植被指数在 1992 年特大干旱监测中的应用[J]. 环境遥感, 1994, 9(2): 106-112.
14 Chen X, Su Y, Yong L, et al. Retrieving China's surface soil moisture and land surface temperature using AMSR-E brightness temperatures[J]. Remote Sensing Letters, 2014, 5(7-9):662-671. DOI: 10.1080/2150704X.2014.960610 .
doi: 10.1080/2150704X.2014.960610
15 Samanta A, Ganguly S, Hashimoto H, et al. Amazon forests did not green‐up during the 2005 drought[J]. Geophysical Research Letters, 2010, 37(5). DOI: 10.1029/2009GL042154 .
doi: 10.1029/2009GL042154
16 Samanta A, Ganguly S, Myneni R B. MODIS enhanced vegetation index data do not show greening of Amazon forests during the 2005 drought[J]. The New Phytologist, 2011, 189(1): 11-15..
17 Dorigo W, Wagner W, Albergel C, et al. ESA CCI soil moisture for improved earth system understanding: State of the art and future directions[J]. Remote Sensing of Environment,2017,203:185-215. DOI: 10.1016/j.rse.2017.07.001 .
doi: 10.1016/j.rse.2017.07.001
18 Liu L, Liao J, Chen X, et al. The Microwave Temperature Vegetation Drought Index (MTVDI) based on AMSR-E brightness temperatures for long-term drought assessment across China (2003-2010)[J]. Remote Sensing of Environment,2017,199:302-320. DOI: 10.1016/j.rse.2017.07.012 .
doi: 10.1016/j.rse.2017.07.012
19 Yuan W, Zheng Y, Piao S, et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth[J]. Science Advances, 2019, 5(8): eaax1396. DOI: 10.1126/sciadv.aax1396 .
doi: 10.1126/sciadv.aax1396
20 Palmer W C. Meteorological drought[M]. US Department of Commerce, Weather Bureau, 1965.
21 Crowley J W, Mitrovica J X, Bailey R C, et al. Land water storage within the Congo Basin inferred from GRACE satellite gravity data[J]. Geophysical Research Letters, 2006, 33(19). DOI: 10.1029/2006GL027070 .
doi: 10.1029/2006GL027070
22 Aragão L E O C, Malhi Y, Roman‐Cuesta R M, et al. Spatial patterns and fire response of recent Amazonian droughts[J]. Geophysical Research Letters, 2007, 34(7). DOI: 10.1029/2006GL028946 .
doi: 10.1029/2006GL028946
23 Rüdiger C, Calvet J C, Gruhier C, et al. An intercomparison of ERS-Scat and AMSR-E soil moisture observations with model simulations over France[J]. Journal of Hydrometeorology, 2009, 10(2): 431-447. DOI: 10.1175/2008JHM997.1 .
doi: 10.1175/2008JHM997.1
24 Meng Linda. Land surface temperature retrieval from AMSR-E data [D]. Changchun: Jilin University,2007.
24 孟霖达.利用 AMSR-E 数据反演地表温度[D]. 长春:吉林大学,2007.
25 Kerr Y H, Njoku E G. A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(3): 384-393. DOI: 10.1109/36.54364 .
doi: 10.1109/36.54364
26 Njoku E G, Ashcroft P, Chan T K, et al. Global survey and statistics of radio-frequency interference in AMSR-E land observations[J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(5):938-947. DOI:10.1109/TGRS. 2004. 837507 .
doi: 10.1109/TGRS. 2004. 837507
27 Mera Y E Z, Vera J F R, Pérez-Martín M Á. Linking El Niño Southern Oscillation for early drought detection in tropical climates: The Ecuadorian coast[J]. Science of The Total Environment, 2018, 643: 193-207. DOI: 10.1016/j.scitotenv.2018.06.160 .
doi: 10.1016/j.scitotenv.2018.06.160
28 Wang X, Piao S, Ciais P, et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations[J]. Nature,2014,506(7487):212-215. DOI: 10.1038/nature12915 .
doi: 10.1038/nature12915
29 Dai A. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013, 3(1): 52-58. DOI: 10.1038/nclimate1633 .
doi: 10.1038/nclimate1633
30 Zhao M, Running S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science,2010,329(5994):940-943. DOI:10.1126/science. 1192666 .
doi: 10.1126/science. 1192666
31 Abatzoglou J T, Dobrowski S Z, Parks S A, et al. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015[J]. Scientific Data, 2018, 5(1): 1-12. DOI: 10.1038/sdata.2017.191 .
doi: 10.1038/sdata.2017.191
32 Rawson H M, Begg J E, Woodward R G. The effect of atmospheric humidity on photosynthesis, transpiration and water use efficiency of leaves of several plant species[J]. Planta, 1977, 134(1): 5-10. DOI: 10.1007/BF00390086 .
doi: 10.1007/BF00390086
33 Dee D P, Uppala S M, Simmons A J, et al. The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553-597. DOI: 10.1002/qj.828 .
doi: 10.1002/qj.828
34 Saatchi S, Asefi-Najafabady S, Malhi Y, et al. Persistent effects of a severe drought on Amazonian forest canopy[J]. Proceedings of the National Academy of Sciences, 2013, 110(2): 565-570. DOI: 10.1073/pnas.1204651110 .
doi: 10.1073/pnas.1204651110
35 Malhi Y, Aragão L E O C, Galbraith D, et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest[J]. Proceedings of the National Academy of Sciences, 2009, 106(49): 20610-20615. DOI: 10.1073/pnas.0804619106 .
doi: 10.1073/pnas.0804619106
36 Viovy N. CRUNCEP version 7-Atmospheric forcing data for the community land model[DB/OL]. https:∥doi.org/10.5065/PZ8F-F017,2018 Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, 2018, 10.
37 Rocha H, Goulden M, Miller S, et al. Seasonality of water and heat fluxes over a tropical forest in Eastern Amazonia[J]. Ecological Applications,2004,14:22-32. DOI:10.1890/02-6001 .
doi: 10.1890/02-6001
38 Shuttleworth W J, Leuning R, Black T A, et al. Micrometeorology of temperate and tropical forest[J]. Philosophical Tran-sactions of the Royal Society B: Biological Sciences. 1989,324:299-334. DOI: 10.1098/rstb.1989.0050 .
doi: 10.1098/rstb.1989.0050
39 von Randow C, Manzi A O, Kruijt B, et al. Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia[J]. Theoretical and Applied Climatology,2004,78:5-26. DOI: 10.1007/s00704-004-0041-z .
doi: 10.1007/s00704-004-0041-z
40 Syed T H, Famiglietti J S, Rodell M, et al. Analysis of terrestrial water storage changes from GRACE and GLDAS[J]. Water Resources Research, 2008, 44(2). DOI: 10.1029/2006WR005779 .
doi: 10.1029/2006WR005779
41 Humphrey V, Gudmundsson L. GRACE-REC: A reconstruction of climate-driven water storage changes over the last century[J]. Earth System Science Data, 2019, 11(3): 1153-1170. DOI: 10.5194/essd-11-1153-2019 .
doi: 10.5194/essd-11-1153-2019
42 Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/ vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2-3): 213-224. DOI: 10.1016/S0034-4257(01)00274-7 .
doi: 10.1016/S0034-4257(01)00274-7
43 Tang H, Dubayah R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure[J]. Proceedings of the National Academy of Sciences,2017,114:2640-2644. DOI:10.1073/pnas. 1616 943114 .
doi: 10.1073/pnas. 1616 943114
44 Alley W M. The Palmer drought severity index: Limitations and assumptions[J]. Journal of Applied Meteorology and Climatology, 1984, 23(7): 1100-1109. DOI: 10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2 .
doi: 10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2
45 Li M, Ma Z. Soil moisture drought detection and multi-temporal variability across China[J]. Science China Earth Sciences. 2015,58(10):1798. DOI:10.1007/s11430-015-5076-8 .
doi: 10.1007/s11430-015-5076-8
46 Li Chao, Li Xuemei, Tian Yalin, et al. Time and space fusion model comparison of temperature vegetation drought index[J]. Remote Sensing Technology and Application, 2020, 35(4): 832-844.
46 李超,李雪梅,田亚林,等.温度植被干旱指数时空融合模型对比[J].遥感技术与应用,2020,35(4):832-844.
47 Zhang Mao, Zhang Xia, Hu Guangcheng, et al. Applicability analysis of remote sensing based drought indices in drought monitoring of apple in Luochuan[J]. Remote Sensing Technology and Application, 2021, 36(1): 187-197.
47 张茂,张霞,胡光成,等. 遥感干旱指数在洛川苹果干旱监测中的适用性分析[J]. 遥感技术与应用,2021,36(1):187-197.
48 Zhao Jiepeng, Zhang Xianfeng, Liao Chunhua, et al. TVDI based soil moisture retrieval from remotely sensed data over large arid areas[J]. Remote Sensing Technology and Application, 2011, 26(6):742-750.
48 赵杰鹏,张显峰,廖春华,等.基于TVDI的大范围干旱区土壤水分遥感反演模型研究[J].遥感技术与应用,2011,26(6):742-750.
49 Andela N, Liu Y Y, Van Dijk A, et al. Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: Comparing a new passive microwave vegetation density record with reflective greenness data[J]. Biogeosciences, 2013, 10(10): 6657-6676. DOI: 10.5194/bg-10-6657-2013 .
doi: 10.5194/bg-10-6657-2013
50 Shi J, Jackson T, Tao J, et al. Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E[J]. Remote Sensing of Environment, 2008, 112(12): 4285-4300. DOI: 10.1016/j.rse.2008.07.015 .
doi: 10.1016/j.rse.2008.07.015
51 Zhang Shuoxin, Hanno R. Cavitation and embolization in the Xylem of woody plants[J]. Journal of Northwest Forestry College,1996(3):19-30.
51 张硕新, Richter Hanno. 木本植物木质部的空穴和栓塞化[J]. 西北林学院学报,1996(3):19-30.
52 Guan K, Pan M, Li H,et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate[J]. Nature Geoscience,2015,8(4):284-289. DOI:10.1038/ngeo 2382 .
doi: 10.1038/ngeo 2382
53 Xu L, Saatchi S S, Yang Y, et al. Satellite observation of tropical forest seasonality: Spatial patterns of carbon exchange in Amazonia[J]. Environmental Research Letters, 2015, 10(8): 084005. DOI: 10.1088/1748-9326/10/8/084005 .
doi: 10.1088/1748-9326/10/8/084005
[1] 杨国范,翟光耀,张婷婷,成遣. 基于环境小卫星的土壤线提取研究[J]. 遥感技术与应用, 2014, 29(3): 428-432.
[2] 王慧慧,周廷刚,杜嘉,苗正红. 温度植被旱情指数在吉林省干旱监测中的应用[J]. 遥感技术与应用, 2013, 28(2): 324-329.
[3] 闫娜娜, 吴炳方, 李强子, 常胜, 张飞飞, 张士昌. HJ-1A/B卫星在干旱应急监测中的应用[J]. 遥感技术与应用, 2010, 25(5): 675-681.
[4] 刘小磊, 覃志豪. NDWI与NDVI指数在区域干旱监测中的比较分析——以2003年江西夏季干旱为例[J]. 遥感技术与应用, 2007, 22(5): 608-612.
[5] 陈 乾. 用植被指数监测干旱并估计冬麦产量[J]. 遥感技术与应用, 1994, 9(3): 12-18.