Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (4): 1003-1011    DOI: 10.11873/j.issn.1004-0323.2022.4.1003
遥感应用     
基于Sentinel-1双极化数据改进水体提取的Otsu算法
冯崎1(),王琦1,黄海兰1,2(),王征强3
1.武汉大学测绘学院,湖北 武汉 430079
2.武汉大学地球空间环境与大地测量教育部重点实验室,湖北 武汉 430079
3.宝鸡市测绘院,陕西 宝鸡 721000
Improved Otsu Algorithm for Water Extraction based on Sentinel-1 Dual-polarization Data
Qi Feng1(),Qi Wang1,Hailan Huang1,2(),Zhengqiang Wang3
1.School of Geodesy and Geomatics,Wuhan University,Wuhan 430079,China
2.Key Laboratory of Geospace Environment and Geodesy,Minstry of Education,Wuhan University,Wuhan 430079,China
3.Baoji Institute of Surveying and Mapping,Baoji 721000,China
 全文: PDF(9980 KB)   HTML
摘要:

基于SAR图像的阈值分割法是水体信息有效提取的常用方法之一。针对Otsu算法对于SAR影像水体提取精度低、噪声大的问题,以C波段Sentinel-1 SAR为数据源,提出一种基于Otsu算法的SAR图像水体提取新方法。该方法首先基于双极化数据构建自然指数函数,优化原始Sentinel-1数据图像像元直方图分布,再结合Otsu算法对图像进行水体提取,最后基于DEM数据去除误提取的山体阴影。以同一天的Landsat 8光学影像作为真实水体样本进行精度评定,结果表明:在不同水体占比情况下,该方法水体提取精度均优于Otsu算法,在水体占比小于10%时综合精度提升约为20%—60%,而且噪声小、适用性强,可用于快速高效获取大范围内水体信息。

关键词: 水体提取Sentinel?1SAROtsu算法双极化    
Abstract:

Threshold segmentation method based on SAR image is one of the commonly used methods for effective extraction of water information. In view of the problem of low accuracy and high noise for water extraction on SAR image by Otsu algorithm, a new method based on Otsu algorithm is proposed using C-band Sentinel-1 SAR as the data source. This method constructs natural exponential function based on dual-polarization data to optimize the histogram distribution of pixels in original Sentinel-1 image firstly, and then combines Otsu algorithm to extract water information from image, at last removes the wrongly extracted hill shade based on DEM. The accuracy is evaluated by using optical images of Landsat 8 as the real water information. The results show that the accuracy of water extraction for the proposed method is superior to traditional Otsu algorithm in the case of different water proportions, accuracy of which increased by about 20—60% while water proportion less than 10%. Moreover, this proposed method has low noise and wide applicability features, which can be used for obtaining water information of large area quickly and efficiently.

Key words: Water extraction    Sentinel-1    SAR    Otsu algorithm    Dual-polarization
收稿日期: 2021-03-21 出版日期: 2022-09-28
:  P332  
基金资助: 国家自然科学基金项目(41721003);湖北省自然科学基金项目(2019CFB427)
通讯作者: 黄海兰     E-mail: 1367555295@qq.com;hlhuang@sgg.whu.edu.cn
作者简介: 冯崎(2000-),男,浙江宁波人,本科生,主要从事测绘工程专业知识学习。E?mail:1367555295@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
冯崎
王琦
黄海兰
王征强

引用本文:

冯崎,王琦,黄海兰,王征强. 基于Sentinel-1双极化数据改进水体提取的Otsu算法[J]. 遥感技术与应用, 2022, 37(4): 1003-1011.

Qi Feng,Qi Wang,Hailan Huang,Zhengqiang Wang. Improved Otsu Algorithm for Water Extraction based on Sentinel-1 Dual-polarization Data. Remote Sensing Technology and Application, 2022, 37(4): 1003-1011.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.4.1003        http://www.rsta.ac.cn/CN/Y2022/V37/I4/1003

图1  研究区位置
图2  实验流程图
图3  样区4 VV、VH和双极化运算图像及直方图
图4  样区4山体阴影去除效果图
图5  不同方法对应的各样区图像像元直方图
图6  不同方法提取的各样区水体结果
样区P/%PR/%F1/%
本文方法Otsu本文方法Otsu本文方法Otsu
VVVHVVVHVVVH
样区168.476.927.2470.1292.1287.5769.2812.9513.37
样区287.7517.3551.9175.4588.8884.7081.1429.0464.37
样区382.0546.1152.9881.4487.0088.2881.7460.2866.22
样区490.2468.4085.2584.5088.4988.3087.2877.1686.75
样区594.7390.5788.7290.8091.9594.2092.7291.2591.37
样区697.8095.8895.8895.4496.2596.8396.6096.0796.35
表1  不同方法提取的水体精度评价表
1 Zhou Peng, Xie Yuanli, Jiang Guangxin,et al. Advances on water body information extraction from remote sensing imagery[J]. Remote Sensing Information,2020,35(5):9-18.
1 周鹏,谢元礼,蒋广鑫,等. 遥感影像水体信息提取研究进展[J]. 遥感信息,2020,35(5):9-18.
2 Chen Lingyan, Liu Zhi, Zhang Hong. SAR image water extraction based on scattering characteristics[J]. Remote Sensing Technology and Application,2014,29(6):963-969.
2 陈玲艳,刘智,张红. 基于水体散射特性的SAR图像水体检测[J]. 遥感技术与应用,2014,29(6):963-969.
3 Sun Yayong, Huang Shifeng, Li Jiren,et al. The downstream flood monitoring application of myanmar irrawaddy river based on sentinel-1A SAR[J]. Remote Sensing Technology and Application,2017,32(2):282-288.
3 孙亚勇,黄诗峰,李纪人,等. Sentinel-1A SAR数据在缅甸伊洛瓦底江下游区洪水监测中的应用[J]. 遥感技术与应用,2017,32(2):282-288.
4 Su Longfei, Li Zhenxuan, Gao Fei,et al. A review of remote sensing image water extraction[J]. Remote Sensing for Land and Resources,2021,33(1) :9-19.
4 苏龙飞,李振轩,高飞,等. 遥感影像水体提取研究综述[J]. 国土资源遥感,2021,33(1):9-19.]
5 An Chengjin, Niu Zhaodong, Li Zhijun,et al. Otsu threshold comparison and SAR water segmentation result analysis[J]. Journal of Electronics & Information Technology,2010,32(9):2215-2219.
5 安成锦,牛照东,李志军,等. 典型Otsu算法阈值比较及其SAR图像水域分割性能分析[J]. 电子与信息学报,2010,32(9):2215-2219.
6 Deng Ying, Zhang Hong, Wang Chao,et al. An object-oriented water extraction method based on texture and polarimetric decomposition feature[J]. Remote Sensing Technology and Application,2016,31(4):714-723.
6 邓滢,张红,王超,等. 结合纹理与极化分解的面向对象极化SAR水体提取方法[J]. 遥感技术与应用,2016,31(4):714-723.
7 Guo Xin, Zhao Yindi. Floodinundation monitoring in Ningxiang of Hunan province based on Sentinel-1A SAR[J]. Remote Sensing Technology and Application,2018,33(4):646-656.
7 郭欣,赵银娣. 基于Sentinel-1A SAR的湖南省宁乡市洪水淹没监测[J]. 遥感技术与应用,2018,33(4):646-656.
8 Li Jianfeng, Zhang Zongke, Wei Xianhu,et al. Research on quick extraction model of flood inundation range[J]. Journal of Irrigation and Drainage,2021,40(S1):26-32.
8 李健锋,张宗科,魏显虎,等. 洪水淹没范围快速提取模型研究[J]. 灌溉排水学报,2021,40():26-32.
9 Lee S U, Chung S Y, Park R H. A comparative performance study of several global thresholding techniques for segmentation[J]. Computer Vision,Graphics,and Image Processing,1990,51(2):171-191.
10 Zhu Jun, Wang Shixi, Ji Kefeng,et al. Improved 2D Otsu algorithm for SAR images[J]. Journal of Image and Graphics,2009,14(1):14-18.
10 朱俊,王世唏,计科峰,等. 一种适用于SAR图像的2维Otsu改进算法[J]. 中国图象图形学报,2009,14(1):14-18.
11 Yang Cunjian, Wei Yiming, Wang Siyuan,et al. Extracting the flood extent from SAR imagery on basis of DEM[J]. Journal of Natural Disasters,2002,21(3):121-125.
11 杨存建,魏一鸣,王思远,等. 基于DEM的SAR图像洪水水体的提取[J]. 自然灾害学报,2002,21(3):121-125.
12 Li Yü, Yang Yun, Zhao Quanhua. Waterbody extraction from SAR imagery based on improved speckle reducing anisotropic diffusion and maximum between-cluster variance[J].Journal of Geo-information Science,2019,21(6):907-917.
12 李玉,杨蕴,赵泉华.结合改进的降斑各向异性扩散和最大类间方差的SAR图像水体提取[J].地球信息科学学报,2019,21(6):907-917.
13 Jin Xiaojun, Cai Anni, Sun Jing’ao. Image segmentation based on 2D maximum between-cluster variance[J]. Journal on Communications,2001,22(4):71-76.
13 景晓军,蔡安妮,孙景鳌. 一种基于二维最大类间方差的图像分割算法[J]. 通信学报,2001,22(4):71-76.
14 Fan Jiulun, Zhao Feng, Zhang Xuefeng. Recursive algorithm for three-dimensional Otsu's thresholding segmentation method[J]. Acta Electronica Sinica,2007,35(7):1398-1402.
14 范九伦,赵凤,张雪峰. 三维Otsu阈值分割方法的递推算法[J]. 电子学报,2007,35(7):1398-1402.
15 Yang Jinlong, Zhang Guangnan, Li Shuzhong,et al. Study of image segmentation algorithm based on two-dimensional histogram[J]. Laser & Infrared,2008,38(4):400-403.
15 杨金龙,张光南,厉树忠,等. 基于二维直方图的图像分割算法研究[J]. 激光与红外,2008,38(4):400-403.
16 Li Zhihui, Chen Xiuwan, Luo Peng,et al. A hybrid thresholding method for water extraction in envisat image[J]. Remote Sensing Information,2013,28(2):62-65,69.
16 李智慧,陈秀万,罗鹏,等. 基于混合阈值法的Envisat影像水体提取[J]. 遥感信息,2013,28(2):62-65,69.
17 Niharika E, Adeeba H, Krishna A S R,et al. K-means based noisy SAR image segmentation using median filtering and otsu method[C]∥2017 International Conference on IoT and Application. IEEE,2017.
18 Guo Zhengwei, Wang Le, Song Guolei. SAR image land and water segmentation algorithm based on hybrid fuzzy[J]. Remote Sensing for Land & Resources,2018,30(4):62-67.
18 郭拯危,王乐,宋国磊. 基于混合模糊的SAR图像水陆分割算法[J]. 国土资源遥感,2018,30(4):62-67.
19 Otsu N. A threshold selection method from Gray-Level histogram[J]. IEEE Transactions on Systems,Man,and Cybernetics,1979,9 (1):62-66.
20 Liu Kang. Advanced methods for building height extraction from high resolution SAR images[D]. Wuhan:Wuhan University,2012.
20 刘康. 基于高分辨率SAR影像提取建筑物高度的研究[D]. 武汉:武汉大学,2012.
21 Luan Yüjie, Guo Jinyun, Gao Yonggang,et al. Remote sensing monitoring of flood and disaster analysis in Shouguang in 2018 from Sentinel-1B SAR data[J]. Journal of Natural Disasters,2021,30(2):168-175.
21 栾玉洁,郭金运,高永刚,等. 基于Sentinel-1B SAR数据的2018年寿光洪水遥感监测及灾害分析[J]. 自然灾害学报,2021,30(2):168-175.
22 Wang Jingming, Wang Shixin, Wang Futao,et al. Flood inundation region extraction method based on Sentinel-1 SAR data[J]. Journal of Catastrophology,2021,36(4): 214-220.
22 王敬明,王世新,王福涛,等. 基于Sentinel-1 SAR数据洪水淹没提取方法研究[J]. 灾害学,2021,36(4):214-220.
23 Wang Ming, Liu Zhengjia, Chen Yuanyan. Comparsions of image cloud detection effect based on Sentinel-2 bands/products[J]. Remote Sensing Technology and Application,2020,35(5):1167-1177.
23 王明,刘正佳,陈元琰. 基于Sentinel-2波段/产品的图像云检测效果对比研究[J]. 遥感技术与应用,2020,35(5):1167-1177.
24 Chen Zhiguo. Flooded area classification by high-resolution SAR images[D]. Wuhan:Wuhan University,2017.
24 陈志国. 高分辨率SAR卫星影像洪水区域提取应用研究[D]. 武汉:武汉大学,2017.
[1] 史佳睿,申茜,彭红春,李利伟,姚月,汪明秀,王茹. 基于三种高分辨率影像样本迁移学习的城市水体提取研究[J]. 遥感技术与应用, 2022, 37(3): 731-738.
[2] 史宜梦,刘希胜,朱文彬,宋宏利. 基于GEE云平台的黄河源区河流径流量遥感反演研究[J]. 遥感技术与应用, 2022, 37(1): 186-195.
[3] 林广坤,吴志峰,曹峥,关文川. 基于SBAS-InSAR技术的围填海区域地面沉降监测[J]. 遥感技术与应用, 2021, 36(6): 1358-1367.
[4] 杨欣源,白晓静. 基于Sentinel-1和MODIS数据反演农田地表土壤水分—以REMEDHUS地区为例[J]. 遥感技术与应用, 2021, 36(5): 973-982.
[5] 李诗娆,张波,刘国祥,沙永莲,王敏,王晓文,张瑞. 基于NPSI方法的西安市地裂缝灾害链地表形变监测与演化态势分析[J]. 遥感技术与应用, 2021, 36(4): 857-864.
[6] 陈子涵,王峰,许宁,尤红建. 基于改进NSST-PCNN的光学与SAR图像融合去云方法[J]. 遥感技术与应用, 2021, 36(4): 810-819.
[7] 安炳琪,罗海滨,丁海勇,张志山,王伟,史潇,柯福阳,王明明. 基于SBAS-InSAR技术的西宁地表形变监测[J]. 遥感技术与应用, 2021, 36(4): 838-846.
[8] 杜妍开,龚丽霞,李强,詹森,张景发. 基于多纹理特征融合的震后SAR图像倒塌建筑物信息提取[J]. 遥感技术与应用, 2021, 36(4): 865-872.
[9] 王晨丞,王永前,王利花. 基于SAR纹理信息的农作物识别研究——以农安县为例[J]. 遥感技术与应用, 2021, 36(2): 372-380.
[10] 金亚秋. 空间微波遥感研究与应用—丛书述评[J]. 遥感技术与应用, 2021, 36(1): 1-10.
[11] 周金霖,陈锟山,古琼昇,曾江源,许镇. 基于多次散射目标模型的雷达成像研究[J]. 遥感技术与应用, 2021, 36(1): 132-140.
[12] 张齐民,郑一桐,张露,李治国,闫世勇. 基于时序像素跟踪算法的南伊内里切克冰川运动提取与特征分析[J]. 遥感技术与应用, 2020, 35(6): 1273-1282.
[13] 任慧敏,宋冬梅,王斌,甄宗晋,刘斌,张婷. 基于新极化特征参数的SAR海洋溢油检测[J]. 遥感技术与应用, 2020, 35(4): 934-942.
[14] 王树果, 马春锋, 赵泽斌, 魏龙. 基于Sentinel-1及Landsat 8数据的黑河中游农田土壤水分估算[J]. 遥感技术与应用, 2020, 35(1): 13-22.
[15] 杨燕,李震,黄磊,田帮森. 高分辨率SAR影像提取冰川面积与冰面河[J]. 遥感技术与应用, 2019, 34(6): 1155-1161.