Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (5): 1128-1139    DOI: 10.11873/j.issn.1004-0323.2022.5.1128
海南遥感观测专栏     
基于Sentinel-2的海南耕地复种指数监测及时空变化分析
郭佳炜1,2,3(),叶回春1,3(),聂超甲1,3,崔贝1,3,黄文江1,3,刘付程2,邹彦龙4
1.海南空天信息研究院 海南省地球观测重点实验室,海南 三亚 572029
2.江苏海洋大学 海洋技术与测绘学院,江苏 连云港 222005
3.中国科学院空天信息创新研究院 数字地球重点实验室,北京 100094
4.中科北纬(北京)科技有限公司,北京 100043
Monitoring and Spatial-temporal Variation of Multiple Cropping Index based on Sentinel-2 in Hainan
Jiawei Guo1,2,3(),Huichun Ye1,3(),Chaojia Nie1,3,Bei Cui1,3,Wenjiang Huang1,3,Fucheng Liu2,Yanlong Zou4
1.Key Laboratory of Earth Observation of Hainan Province,Hainan Aerospace Information Research Institute,Sanya 572029,China
2.School of Marine Technology and Geomatics,Jiangsu Ocean University,Lianyungang 222005,China
3.Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China
4.Zhongke Beiwei (Beijing) Technology Co. ,Ltd,Beijing 100043
 全文: PDF(9930 KB)   HTML
摘要:

海南是发展热带特色高效农业的黄金宝地,开展高时空分辨率耕地复种指数遥感监测与时空变化分析对海南农业生产管理具有重要意义。基于Sentinel-2数据,利用最大值合成法和Savitzky-Golay滤波对NDVI时间序列曲线作平滑重构,结合二次差分法计算2016—2020年海南耕地复种指数,分析海南省耕地复种指数的时空演变特征。结果表明:通过2020年地面调查数据验证,海南耕地复种指数提取总体精度达91.94%,Kappa系数为0.88。海南省耕地复种指数从2016年1.53提升到2020年1.66,提高了0.13。从2016年到2020年单季种植面积占比增加了6.10%,两季种植面积占比减少了2.65%,三季种植面积占比增加了5.10%,休耕或抛荒耕地面积占比减少了5.60%。海南省各市县耕地复种指数在1.28—1.96区间内,其中海口市、三亚市、东方市、临高县等地区耕地复种指数上升,而琼海市、万宁市、琼中县等地区耕地复种指数下降。研究结果可为海南农业部门合理调整休耕、开垦方案等政策,实施热带高效农业可持续发展战略提供数据和决策支撑。

关键词: 耕地复种指数Savitzky?Golay滤波Sentinel?2数据时空变化    
Abstract:

Hainan province is a golden place to develop tropical characteristic and efficient agriculture. It is of great significance to analyze the change of multiple cropping index with high spatial and temporal resolution. Based on Sentinel-2 data, maximum value composite and Savitzky-Golay filtering and smoothing were used to reconstruct NDVI time series curve. The second difference method was used to calculate the multiple cropping index of cultivated land in Hainan province from 2016 to 2020, and the spatial-temporal evolution characteristics of the multiple cropping index were analyzed. The results showed that the overall accuracy of multiple cropping index extraction in Hainan was 91.94% and the Kappa coefficient was 0.88, verified by the ground survey data in 2020. The multiple cropping index of hainan cultivated land increased from 1.53 in 2016 to 1.66 in 2020, an increase of 0.13. From 2016 to 2020, the single-season planting area increased by 6.10 percent, the two-season planting area decreased by 2.65 percent, the three-season planting area increased by 5.10 percent, and the fallow or abandoned farmland decreased by 5.60 percent. The multiple cropping index of all cities and counties in Hainan province is in the range of 1.28—1.96. The multiple cropping index of Haikou city, Sanya City, Dongfang City, Lingao County increases, while the multiple cropping index of Qionghai City, Wanning City and Qiongzhong County decreases. The results can provide data and decision-making support for agricultural departments in Hainan to adjust fallow and reclamation policies reasonably and implement sustainable development strategy of tropical efficient agriculture.

Key words: Multiple cropping index    Savitzky-Golay filtering    Sentinel-2    Temporal and spatial variation
收稿日期: 2022-01-29 出版日期: 2022-12-13
ZTFLH:  S127  
基金资助: 三亚市农业科技创新项目(2019NK17);海南省重大科技计划项目(ZDKJ2019006);中国科学院青年创新促进会项目(2021119)
通讯作者: 叶回春     E-mail: guojw@jou.edu.cn;yehc@aircas.ac.cn
作者简介: 郭佳炜(1997-),男,黑龙江哈尔滨人,硕士研究生,主要从事农业遥感机理及应用研究。E?mail:guojw@jou.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭佳炜
叶回春
聂超甲
崔贝
黄文江
刘付程
邹彦龙

引用本文:

郭佳炜,叶回春,聂超甲,崔贝,黄文江,刘付程,邹彦龙. 基于Sentinel-2的海南耕地复种指数监测及时空变化分析[J]. 遥感技术与应用, 2022, 37(5): 1128-1139.

Jiawei Guo,Huichun Ye,Chaojia Nie,Bei Cui,Wenjiang Huang,Fucheng Liu,Yanlong Zou. Monitoring and Spatial-temporal Variation of Multiple Cropping Index based on Sentinel-2 in Hainan. Remote Sensing Technology and Application, 2022, 37(5): 1128-1139.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.5.1128        http://www.rsta.ac.cn/CN/Y2022/V37/I5/1128

图1  研究区耕地分布及耕地种植制度地面调查样点分布图 审图号:琼S(2021)115号
图2  不同种植制度下的耕地NDVI时间序列拟合曲线
图3  基于Sentinel-2的2020年海南局部地区作物休耕或撂荒、单季种植、两季种植、三季种植影像
种植制度休耕或抛荒单季两季三季

生产者精度

/%

总体精度:91.94%;Kappa系数:0.887
休耕或抛荒31000100
单季0513291.07
两季1776288.37
三季1103694.74
用户精度/%93.5584.3196.0588.89
表1  2020年海南耕地复种指数遥感提取精度验证结果
图4  2016—2020年海南省耕地复种指数空间分布图审图号:琼S(2021)115号
种植制度2016年2018年2020年2016—2020相对变化
休耕或抛荒耕地面积/hm245 359.8123 552.2120 935.30-24 424.50
占耕地比重/%10.405.404.80-5.60
单季种植面积/hm2146 983.20156 142.40173 588.5026 605.27
占耕地比重/%33.7035.8039.806.10
两季种植面积/hm2210 443.30208 916.80198 885.30-11 558.00
占耕地比重/%48.2547.9045.60-2.65
三季种植面积/hm233 583.7047 540.5755 827.4622 243.75
占耕地比重/%7.7010.9012.805.10
耕地复种指数1.531.641.660.13
表2  2016—2020年海南省种植制度面积及占耕地比重情况
图5  2016—2020年海南省耕地复种指数年际变化分布图审图号:琼S(2021)115号
种植模式变化

2016—2020

年际变化

2016—2018

年际变化

2018—2020

年际变化

无变化39.78%42.98%42.41%
休耕→单季3.96%3.63%1.72%
休耕→两季2.83%2.42%0.64%
休耕→三季0.68%0.40%0.13%
单季→休耕0.68%0.92%0.78%
单季→两季15.38%16.53%15.84%
单季→三季4.23%3.29%3.96%
两季→休耕0.45%0.46%0.38%
两季→单季19.26%16.83%18.58%
两季→三季6.20%6.02%6.44%
三季→单季2.49%2.49%3.79%
三季→两季4.04%4.04%5.33%
表3  2016—2020年海南省耕地复种指数年际变化情况
图6  2016—2020年海南省各市县耕地复种指数及种植制度面积占比空间分布图审图号:琼S(2021)115号
图7  2016—2020年海南省局部显著变化区域耕地复种指数空间分布图 审图号:琼S(2021)115号
1 Zhang Chaungjuan, He Hongming. The evolution of spatiotemporal patterns and the influencing factors of the multiple cropping index of cultivated land in Southwest China[J]. Agricultural Research in the Arid Areas,2020,38(3):222-230.
1 张闯娟,何洪鸣.西南地区耕地复种指数的时空格局演变及影响因素[J]. 干旱地区农业研究,2020,38(3):222-230.
2 Wang Bin, Huang Shengyi, Min Qingwen. Soil nutrient characteristics and spatial variability of farmland in high multiple cropping index area of Pidu District, Chengdu City[J]. Ecological Science,2020,39(3):151-159.
2 王斌,黄盛怡, 闵庆文, 等. 高复种指数区成都市郫都区农田土壤养分特征及其空间变异研究[J]. 生态科学,2020,39(3):151-159.
3 Liu Xunhao. Multiple cropping index in cultivated land of China[J].Crops,1997(3):1-3.
3 刘巽浩. 论我国耕地种植指数(复种)的潜力[J].作物杂志,1997(3):1-3.
4 Jiang M, Li X B, Xin L J,et al .Paddy rice multiple cropping index changes in Southern China[J]. Journal of Geographical Sciences,2019,29(11):1773-1787. DOI:10.1007/s11442-019-1689-8 .
doi: 10.1007/s11442-019-1689-8
5 Zhang C J, He H M, Ali M. The impact of climate change and human activity on spatiotemporal patterns of multiple cropping index in South West China[J]. Sustainability, 2019, 11(19):1-21. DOI:10.3390/su11195308 .
doi: 10.3390/su11195308
6 Chen B. Globally increased crop growth and cropping intensity from the long-term satellite-based observations[J]. ISPRS Annals of Photogrammetry, Remote Sensing Spatial Information Sciences,2018,4(3):45-52. DOI:10.5194/isprs-annals-IV-3-45-2018 .
doi: 10.5194/isprs-annals-IV-3-45-2018
7 Panigrahy S, Sharma S A. Mapping of crop rotation using multidate Indian remote sensing satellite digital data[J]. Journal of Photo grammetry and Remote Sensing,1997,52(2):85-91. DOI:10.1016/S0924-2716(97)83003-1 .
doi: 10.1016/S0924-2716(97)83003-1
8 Sakamoto T, Van Nguyen N, Ohno H, et al. Spatio-temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers[J]. Remote Sensing of Environment,2006,100(1):1-16. DOI:doi.org/10.1016/j.rse.2005.09.007 .
doi: doi.org/10.1016/j.rse.2005.09.007
9 Yan H M, Liu F, Qin Y W, et al. Tracking the spatio-temporal change of cropping intensity in China during 2000-2015[J]. Environmental Research Letters,2019, 14(3): 035008. DOI: 10.1088/1748-9326/aaf9c7 .
doi: 10.1088/1748-9326/aaf9c7
10 Li Yu, Qiu Bingwen, He Yuhua. Cropping intensity based on MODIS data in China during 2001—2018[J]. Progress in Geography,2020,39(11):1874-1883.
10 李宇,邱炳文,何玉花,陈功,叶智燕.基于MODIS数据的2001—2018年中国耕地复种指数反演研究[J].地理科学进展,2020,39(11):1874-1883.
11 Zuo Lijun, Dong Tingting, Wang Xiao, et al. Multiple cropping index of Northern China based on MODIS/EVI[J]. Transactions of the Chinese Society of Agricultural Engineering,2009,25(8):141-146.
11 左丽君, 董婷婷, 汪潇, 等. 基于MODIS/EVI的中国北方耕地复种指数提取[J]. 农业工程学报, 2009, 25(8): 141-146.
12 Jiang M, Xin L J, Li X B, et al. Decreasing rice cropping intensity in southern China from 1990 to 2015[J]. Remote Sensing, 2019, 11(1): 35. DOI:10.3390/rs11010035 .
doi: 10.3390/rs11010035
13 Xu W, Jin J, Jin X, et al. Analysis of changes and potential characteristics of cultivated land productivity based on MODIS EVI:A case study of Jiangsu province,China[J]. Remote Sensing,2019(11):2041. DOI:10.3390/rs11172041 .
doi: 10.3390/rs11172041
14 Wang Xuan, Wang Yuanzheng, Fang Peng, et al. Extractionand temporaland spatial pattern analysis of multiple cropping indexes in Henan Province based on time series MODIS NDVI[J]. Journal of Henan University (Natural Science Edition), 2020,50(5):524-534.
14 王璇, 王远征, 方鹏, 等. 基于时间序列MODIS NDVI的河南省复种指数的提取与时空格局分析[J]. 河南大学学报: 自然科学版,2020,50(5):524-534.
15 Yan H M, Liu F, Niu Z E, et al. Changes of multiple cropping in Huang-Huai-Hai agricultural region,China[J]. Journal of Geographical Sciences,2018,28(11):1685-1699. DOI:10.1007/s11442-018-1537-2 .
doi: 10.1007/s11442-018-1537-2
16 Wu W B, Yu Q Y, You L Z, et al. Global cropping intensity gaps: Increasing food production without cropland expansion[J]. Land Use Policy,2018,76:515-525. DOI:10.1016/j.landusepol.2018.02.032 .
doi: 10.1016/j.landusepol.2018.02.032
17 Zhao Y, Bai L Y, Feng J Z, et al. Spatial and temporal distribution of multiple cropping indices in the North China Plain using a long remote sensing data time series[J]. Sensors,2016,16(4):557. DOI:10.3390/s16040557 .
doi: 10.3390/s16040557
18 Li Zhuo, Liu Shuliang, Sun Ranhao, et al. Identifying the temporal-spatial pattern evolution of the multiple cropping index in the Huang-Huai-Hai region[J]. Acta Ecologica Sinica, 2018,38(12):4454-4460.
18 李卓,刘淑亮,孙然好,等.黄淮海地区耕地复种指数的时空格局演变[J]. 生态学报,2018,38(12):4454-4460.
19 Li L, Zhao Y L, Fu Y C, et al. High resolution mapping of cropping cycles by fusion of Landsat and MODIS data[J]. Remote Sensing,2017,9(12):1232.DOI:org/10.3390/rs9121232 .
doi: org/10.3390/rs9121232
20 Liu C, Zhang Q, Tao S Q,et al.A new framework to map fine resolution cropping intensity across the globe:Algorithm, va-lidation,and implication[J].Remote Sensing of Environment, 2020,251. DOI:10.1016/j.rse.2020.112095 .
doi: 10.1016/j.rse.2020.112095
21 Liu C, Zhang Q, Tao S Q,Thinking on the conservation of farmland quality and development of agricultural modernization in Hainan province[J].China Development,2014,14(1):77-80.
21 黄俊生, 侯宪文. 关于保护海南耕地质量和现代农业建设的思考[J]. 中国发展,2014,14(1):77-80.
22 Holben B N. Characteristics of maximum-value composite images from temporal AVHRR data[J]. International Journal of Remote Sensing,1986,7(11):1417-1434. DOI:10.1080/01431168608948945 .
doi: 10.1080/01431168608948945
23 Zhong Liwen. Characteristics of agriculture resources and path selection of tropical agriculture development in Hainan province[J]. Research of Agricultural Modernization,2009,30(3):306-309.
23 钟利文.海南的农业资源特点和热带农业发展道路选择[J]. 农业现代化研究,2009,30(3):306-309.
24 Chen J, Jonsson P, Tamura M, et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter[J].Remote sensing of Environment,2004,91(3/4):332-344. DOI:10.1016/j.rse.2004.03. 014 .
doi: 10.1016/j.rse.2004.03. 014
25 Madden H. Comments on the Savitzky-Golay convolution method for Least-squares-fit smoothing and differentiation of digital data[J]. Analytical Chemistry, 1978, 50(9):1383-1386. DOI:10.1021/ac50031a048 .
doi: 10.1021/ac50031a048
26 Ge Zhongxi, Huang Jing, Lai Peiyu,et al.Research progress on remote sensing monitoring of cultivated land cropping intensity[J]. Journal of Geo-information Science,2021,23(7):1169-1184.
26 葛中曦,黄静,赖佩玉,等. 耕地复种指数遥感监测研究进展[J]. 地球信息科学学报,2021,23(7):1169-1184.
27 Schapire R E, Frreund Y, Bartlett P,et al. Boosting the margin: A new explanation for the effectiveness of voting methods[J].The Annals Statistics,1998,26:1651-1686. DOI:10. 1214/aos/1024691352 .
doi: 10. 1214/aos/1024691352
28 Yang Dongxiao. On the policy of benefiting the agriculture of Danzhou city executive: Problems and Countermeasures [D]. Haikou:Hainan University,2015.
28 羊东晓.儋州市对强农惠农政策的执行: 问题与对策[D].海口:海南大学,2015.
29 Wu Wenbin, Yu Qiangyi, Lu Miao, et al. Key research priorities for multiple cropping systems[J]. Scientia Agricultura Sinica,2018,51(9):1681-1694.
29 吴文斌, 余强毅, 陆苗, 等. 耕地复种指数研究的关键科学问题[J]. 中国农业科学,2018,51(9):1681-1694.
[1] 崔泽鹏,王志慧,肖培青,申震洲,常晓格,石永磊,马力. 2000—2018年黄河上中游地区蒸散发年际时空变化及其影响因素分析[J]. 遥感技术与应用, 2022, 37(4): 865-877.
[2] 蔡俊飞,赵伟,杨梦娇,詹琪琪,付浩,何坤龙. 基于GLASS数据的青藏高原2001—2018年蒸散发时空变化分析[J]. 遥感技术与应用, 2022, 37(4): 888-896.
[3] 刘立越,苗则朗,吴立新. 基于MODIS数据的亚马逊热带雨林火灾时空变化规律研究[J]. 遥感技术与应用, 2022, 37(3): 721-730.
[4] 乔海伟,张彦丽. 融合FY-3C号和FY-4A号卫星数据的积雪面积变化研究—以祁连山区为例[J]. 遥感技术与应用, 2020, 35(6): 1320-1328.
[5] 李荪青,付碧宏. 基于线性光谱混合分析的乌鲁木齐不透水层提取及其时空变化分析[J]. 遥感技术与应用, 2020, 35(4): 962-974.
[6] 龙爽,郭正飞,徐粒,周华真,方伟华,许映军. 基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J]. 遥感技术与应用, 2020, 35(2): 326-334.
[7] 郑贵洲,熊良超,廖艳雯,王红平. 利用MODIS数据反演南海南部海表温度及时空变化分析[J]. 遥感技术与应用, 2020, 35(1): 132-140.
[8] 王莹莹, 袁金国, 张莹, 吴朝阳. 中国温带地区植被物候期时空变化特征及对总初级生产力的影响[J]. 遥感技术与应用, 2019, 34(2): 377-388.
[9] 冯姣姣, 王维真, 李净, 刘雯雯. 基于BP神经网络的华东地区太阳辐射模拟及时空变化分析[J]. 遥感技术与应用, 2018, 33(5): 881-889.
[10] 茹皮亚·西拉尔, 杨辽. 新疆棉花物候时空变化遥感监测及气温影响分析[J]. 遥感技术与应用, 2018, 33(5): 923-931.
[11] 郝斌飞,韩旭军,马明国,刘一韬,李世卫. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用, 2018, 33(4): 600-611.
[12] 郝建盛,张飞云,赵鑫,刘云霄,李兰海. 基于GRACE监测数据的伊犁—巴尔喀什湖盆地水储量变化特征及影响因素[J]. 遥感技术与应用, 2017, 32(5): 883-892.
[13] 唐志光,王建,王欣,彭焕华,梁继. 近15年天山地区积雪时空变化遥感研究[J]. 遥感技术与应用, 2017, 32(3): 556-563.
[14] 杨志刚,达娃,除多. 近15 a青藏高原积雪覆盖时空变化分析[J]. 遥感技术与应用, 2017, 32(1): 27-36.
[15] 周春艳,厉青,张丽娟,马鹏飞,陈辉,王中挺. 遥感监测2005~2015年中国NO2时空特征及分析影响因素[J]. 遥感技术与应用, 2016, 31(6): 1190-1200.