Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (5): 1159-1169    DOI: 10.11873/j.issn.1004-0323.2022.5.1159
海南遥感观测专栏     
海南岛干旱特征遥感识别及时空变化研究
马毓窕1(),穆晓东2,侯鹏1,3(),孙林1,张邻晶1
1.山东科技大学测绘与空间信息学院,山东 青岛 266000
2.海南省环境科学研究院,海南 海口 571127
3.生态环境部卫星环境应用中心,北京 100094
Remote Sensing Identification and Spatial Variation of Drought Characteristics in Hainan Island
Yutiao Ma1(),Xiaodong Mu2,Peng Hou1,3(),Lin Sun1,Linjing Zhang1
1.School of Geomatics and Spatial Information,Shandong University of Science and Technology,Qingdao 266000,China
2.Hainan Academy of Environmental Sciences,Haikou 571127,China
3.Satellite Environmental Application Center,Ministry of Ecology and Environment,Beijing 100094,China
 全文: PDF(6512 KB)   HTML
摘要:

海南岛是我国重要的湿热带宝地,受自然地理环境和条件等因素影响,岛上干旱频发,旱涝严重,对农业生产和人民生活造成了重大的经济损失。基于MODIS数据,计算了归一化植被指数NDVI和陆地表面温度LST,进而构建了植被供水指数模型VSWI,分析了海南岛2004—2020年干旱特征和时空变化分布演变规律,结论如下:①2004—2020年期间海南岛以2004、2005、2010、2015年整体干旱偏严重,2005年海南岛旱情最为严重,干旱面积分布可达总面积的56.76%,其中重旱、中旱、轻旱所占的面积比例分别为7.37%、20.75%、28.64%,旱情影响较为广泛。②海南岛VSWI年内指数变化整体呈现先减小后增加的单峰型趋势,1—5月呈下降趋势,干旱随着时间推移不断加重,4月和5月旱情达到高峰,6—12月受气候因素影响干旱略有缓解。2005年5月旱情最为严重,整个区域的84.27%均处于不同程度的干旱,受灾严重区域集中在西南部地区,儋州市受灾最为严重,特旱面积可达35.57%,无旱面积仅为2.31%,空间范围上广泛受灾。③受地理因子和气候因素影响,不同土地利用类型年内VSWI值变化趋于一致,林地和草地受干旱影响程度较轻,耕地和城镇因植被稀疏受干旱影响较强,月均值最小值皆在4月。④2004—2020年海南岛VSWI空间分布具有明显的季节性差异,海南岛主要以冬旱和春旱为主,夏旱和秋旱也时有发生,各市县干旱具有明显的地域差异和季节差异,沿海重于内陆,四周重于中间,南部重于北部,西部重于南部。⑤海南岛VSWI与降雨和气温因子关系较为密切,其中降雨与植被供水指数VSWI的相关性最高,且降雨因子影响所占的面积比例较大,因此,海南岛干旱主要受气象因子降雨的影响。研究结果可以为海南岛干旱预警提供参考依据。

关键词: 海南岛植被供水指数干旱特征时空变化    
Abstract:

Hainan Island is an important wet tropical treasure land in my country. Affected by factors such as natural geographical environment and conditions, frequent droughts and severe droughts and floods on the island have caused significant economic losses to agricultural production and people's lives. Based on MODIS data, this paper calculates the normalized vegetation index NDVI and land surface temperature LST, and then builds the vegetation water supply index model VSWI, and analyzes the characteristics of the drought in Hainan Island from 2004 to 2020. The conclusions are as follows: (1) During the period from 2004 to 2020, the overall drought in Hainan Island was more severe in 2004, 2005, 2010 and 2015, and the drought in Hainan Island in 2005 was more severe. The most serious drought area distribution can reach 56.76% of the total area, among which the area proportions of severe drought, moderate drought and mild drought are 7.37%, 20.75% and 28.64% respectively. (2) The change of the VSWI index in Hainan Island showed a unimodal trend of decreasing at first and then increasing. It showed a downward trend from January to May. The drought continued to increase with time. The drought reached its peak in April and May, and from June to December. Due to climate, the drought eased slightly. In May 2005, the drought was the most serious. 84.27% of the entire region was in various degrees of drought. The severely affected areas were concentrated in the southwestern region, and Danzhou City was the most severely affected. The area with extreme drought reached 35.57%, and the area without drought was only 2.31%. (3) Affected by geographical factors and climatic factors, the changes of VSWI values ??in different land use types tend to be consistent within the year. Forest land and grassland are less affected by drought, and cultivated land and urban areas are more affected by drought due to sparse vegetation. in April. (4) There are obvious seasonal differences in the spatial distribution of VSWI in Hainan Island from 2004 to 2020. In Hainan Island, winter drought and spring drought are the main ones, and summer drought and autumn drought also occur from time to time. The drought in each city and county has obvious regional differences and Seasonal difference, the coast is heavier than the inland, the surrounding is heavier than the middle, the south is heavier than the north, and the west is heavier than the south. (5) Hainan Island VSWI is closely related to rainfall and temperature factors. The correlation between rainfall and vegetation water supply index VSWI is the highest, and rainfall factors account for a large proportion of the area. Therefore, the drought in Hainan Island is mainly affected by meteorological factors. The research results can provide a reference for the drought warning in Hainan Island.

Key words: Hainan Island    Vegetation supply water index    Drought characteristics    Space-time change
收稿日期: 2022-02-20 出版日期: 2022-12-13
ZTFLH:  TP79  
基金资助: 国家重点研发计划项目(2021YFF0703903)
通讯作者: 侯鹏     E-mail: qwertbng@126.com;houpcy@163.com
作者简介: 马毓窕(1997-),女,河北石家庄人,硕士研究生,主要从事土壤湿度反演以及干旱监测。E?mail:qwertbng@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马毓窕
穆晓东
侯鹏
孙林
张邻晶

引用本文:

马毓窕,穆晓东,侯鹏,孙林,张邻晶. 海南岛干旱特征遥感识别及时空变化研究[J]. 遥感技术与应用, 2022, 37(5): 1159-1169.

Yutiao Ma,Xiaodong Mu,Peng Hou,Lin Sun,Linjing Zhang. Remote Sensing Identification and Spatial Variation of Drought Characteristics in Hainan Island. Remote Sensing Technology and Application, 2022, 37(5): 1159-1169.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.5.1159        http://www.rsta.ac.cn/CN/Y2022/V37/I5/1159

图1  海南岛土地利用类型图审图号:GS(2019)1822
图2  海南岛2018年3月—11月土壤相对湿度与VSWI拟合图(a)VSWI与10 cm相对土壤湿度关系 (b)VSWI与20 cm相对土壤湿度关系
等级RSM/%VSWI干旱等级
160<RSMVSWI>0.025正常
250<RSM≤600.022<VSWI≤0.025轻旱
340<RSM≤500.019<VSWI≤0.022中旱
430<RSM≤400.017<VSWI≤0.019重旱
5RSM≤300<VSWI≤0.017特旱
表1  干旱等级划分标准
图3  2004—2020植被供水指数年均值变化
图4  4个年份的月均值干旱指数
图5  4个年份旱情面积分布
图6  2005年5月海南岛干旱等级划分(审图号:GS(2019)1822)
图7  4个区域旱情面积比较
图8  不同土地利用类型VSWI年内变化
图9  海南岛四季干旱等级空间分布图审图号:GS(2019)1822
图10  海南岛2004—2015年均降雨量、气温空间分布图审图号:GS(2019)1822
图11  海南岛2004—2015年 VSWI与降雨量、气温之间的相关性审图号:GS(2019)1822
1 Nicolai-shaw N, Zscheischler J, Hirschi M, et al. A drought event composite analysis using satellite remote-sensing based soil moisture[J]. Remote Sensing of Environment,2017,203: 216-225.
2 Li Yiping, Li Yaohui. Research progress on the adaptability of meteorological drought index in China[J].Arid Meteorology,2017,35(5):709-723.
2 李忆平,李耀辉.气象干旱指数在中国的适应性研究进展[J].干旱气象,2017,35(5):709-723.
3 Muller L M, Bahn M. Drought legacies and ecosyste-m responses to subsequent drought[J]. Global Change Biology, 2022,28(17):5086-5103. DOI.10.1111/gcb.16270.
4 Guo Ni, Wang Xiaoping, Wang Wei,et al. Advance-s in drought remote sensing monitoring technology[J].Progress in Meteorological Science and Technology,2020,10(3):10-20.
4 郭铌,王小平,王玮,等.干旱遥感监测技术进展[J]. 气象科技进展,2020,10(3):10-20.
5 Cao Zhangchi, Yan Jing, Li Feng,et al. Applicability analysis of various drought remote sensing indices in Linyi area [J]. Chinese Agricultural Science Bulletin,2016, 32(20):107-112.
5 曹张驰, 严婧, 李峰, 等. 多种干旱遥感指数在临沂地区的适用性分析[J]. 中国农学通报, 2016, 32(20):107-112.
6 Palmer W C. Meteorological drought[M]. Washington DC:US Department of Commerce, Weather Bureau, 1965.
7 Mckee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[J]. Proceedings of the 8th Conference on Applied Climatology,1993,17(22): 179-183.
8 Zhang Qiang, Ju Xiaosheng, Li Shuhua. Comparison of three drought indexes and determination of new indexes[J]. Meteorological science and technology,1998(2):49-53.
8 张强,鞠笑生,李淑华.三种干旱指标的比较和新指标的确定[J].气象科技,1998(2):49-53.
9 Vicente-serrano S M, Begueria S, Lopez-Moreno J I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index[J]. Journal of Climate,2010,23(7):1696-1718.
10 Ma Z C, Sun P, Zhang Q, et al. Characterization and evaluation of MODIS-Derived Crop Water Stress Index (CWSI) for monitoring drought from 2001 to 2017 over Inner Mongolia[J]. Sustainability, 2021, 13(2): 916. DOI:10.3390/su13020916 .
doi: 10.3390/su13020916
11 Jackson R D, Kustas W P. A reexamination of the crop water stress index[J]. Irrigation Science,1988,9(4):309-317.
12 Sandhol T I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2): 213-224.
13 Carlson T N, Perry E M, Schmugge T J. Remote estimation of soil moisture availability and fractional vegetation cover for agricultural fields[J].Agricultural & Forest Meteorology,1990, 52(1-2):45-69.
14 Bindlish R, Jacjsib T J, Gasiewski A J, et al. Soil moisture mapping and AMSR-E validation using the PSR in SMEX02[J]. Remote Sensing of Environment,2012,103(2):127-139.
15 Liu Xiaolu, Zhou Yangang, Wen Li, et al. Drought characteristics in Henan province from 2000 to 2016 based on VSWI and SPI[J]. Arid Land Geography,2018,41(5):984-991.
15 刘晓璐,周廷刚, 温莉, 等.基于VSWI和SPI的2000—2016年河南省干旱特征研究[J].干旱区地理,2018,41(5):984-991.
16 Ma Zice, Sun Peng, Zhang Qiang, et al. Research on remote sensing drought monitoring in North China based on MODIS data[J]. Geographical Sciences 2022,42(1):152-162.
16 马梓策,孙鹏,张强,姚蕊.基于MODIS数据的华北地区遥感干旱监测研究[J].地理科学,2022,42(1):152-162.
17 Pan Weihua, Chen Jiajin, Chen Hui, et al. Remote sensing dynamic monitoring of drought in Fujian province based on MODIS data[J]. Chinese Journal of Eco-Agriculture,2008(4):1015-1019.
17 潘卫华, 陈家金, 陈惠, 等. 基于MODIS数据的福建省干旱遥感动态监测分析[J]. 中国生态农业学报, 2008(4):1015-1019.
18 Luo Shaohua, Hu Jufang, Gong Zhiyu. Study on remote sensing monitoring technology of spring drought in Jiangxi province in 2011 based on MODIS[J]. Meteorological Hydrological and Marine Instrument,2015,32(3):32-35.
18 罗少华,胡菊芳,巩志宇.基于MODIS的江西省2011年春旱遥感监测技术研究[J].气象水文海洋仪器,2015,32(3):32-35.
19 Cunha A, Alvala R C, Nobre C A, et al. Monitoring vegetative drought dynamics in the Brazilian semiarid region[J]. Agricultural & Forest Meteorology,2015,214-215:494-505.
20 Oliveira N M, Silva R M, Brasil Neto R M, et al. Spatiotemporal patterns of agricultural and meteorological droughts using SPI and MODIS-based estimates over a Brazilian semiarid region: Study case of Upper Paraíba River basin[J]. Geocarto International,2022:1-24. DOI:10.1080/10106049.2022 2060315 .
doi: 10.1080/10106049.2022 2060315
21 Li Hailiang, Tian Guanghui, Liu Haiqing.Research on drou-ght monitoring in Hainan island based on MODIS data[J]. Guangdong Agricultural Sciences,2011,38(6):204-206.
21 李海亮, 田光辉, 刘海清.基于MODIS数据的海南岛干旱监测研究[J].广东农业科学,2011,38(6):204-206.
22 Xu Xinliang, Liu Jiyuan, Zhang Shuwen,et al. Multiperiod land use land cover remote sensing monitoring dataset in China (CNLUCC)[DB/OL]. Data Registration and Publication System of the Data Center for Resource and Environmental Sciences, Chinese Academy of Sciences (http:∥www.resdc.cn/DOI), 2018.徐新良,刘纪远,张树文,等.中国多时期土地利用土地覆被遥感监测数据集(CNLUCC)[DB/OL]. 中国科学院资源环境科学数据中心数据注册与出版系统(http:∥www.resdc.cn/DOI),2018.
23 Li Hailiang, Dai Shengpei, Hu Shenghong, et al. Agricultural drought comprehensive monitoring model based on spatial information and its application[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(22):181-188,295.
23 李海亮, 戴声佩, 胡盛红, 等. 基于空间信息的农业干旱综合监测模型及其应用[J]. 农业工程学报,2012,28(22):181-188,295.
24 Qian Yonglan, Houquan Lü, Zhang Yanhong. Application and evaluation of daily meteorological elements interpolation method based on ANUSPLIN software[J].Journal of Meteorology and Environment,2010,26(2):7-15.
24 钱永兰, 吕厚荃, 张艳红. 基于ANUSPLIN软件的逐日气象要素插值方法应用与评估[J]. 气象与环境学报,2010,26(2):7-15.
25 Li Hailiang, Dai Shengpei, Hu Shenghong, et al. Research on comprehensive monitoring of agricultural drought in Hainan Island[J]. Journal of Sun Yat-sen University (Natural Science Edition),2012,51(6):126-130.
25 李海亮, 戴声佩, 胡盛红, 等. 海南岛农业干旱综合监测研究[J]. 中山大学学报(自然科学版),2012,51(6):126-130.
26 Cao Yan, Wang Jie, Li Zhufen, et al. Soil water retrieval based on VSWI method in Yunnan province[J]. China Rural Water and Hydropower, 2017(4):22-27.
26 曹言, 王杰, 李竹芬, 等. 基于VSWI法的云南省土壤水分反演研究[J]. 中国农村水利水电, 2017(4):22-27.
27 Zhou Xiaofeng, Nie Yan, Liu Xiuyun, et al. Soil moisture retrieval based on Vegetation Water Supply Index in Northern Tibet[J].China Agricultural Information,2018,30(4):90-100.
27 周逍峰, 聂艳, 刘秀芸, 等. 基于植被供水指数的藏北地区土壤湿度反演研究[J]. 中国农业信息,2018,30(4):90-100.
28 Yang Yanrong, Hu Guoqiang.Research on soil moisture retrie-val method in arid region based on Vegetation Water Supply Index[J].Modern electronic Technology,2019,42(2):138-142,146.
28 杨彦荣, 胡国强.基于植被供水指数的旱区土壤湿度反演方法研究[J].现代电子技术,2019,42(2):138-142,146.
29 Li Qi, Sun Xiaoyu, Wang Lianxi, et al. Application of VSWI based on different vegetation indices in spring drought monitoring in Henan province[J]. Crop Journal,2016(1):162-168.
29 李琪, 孙晓宇, 王连喜, 等.基于不同植被指数的VSWI在河南省春季干旱监测中的应用分析[J].作物杂志, 2016(1):162-168.
30 Li Y, Dong Y, Yin D, et al. Evaluation of drought monitoring effect of winter wheat in Henan province of China based on multi-source data[J]. Sustainability,2020,12(7):2801. DOI:10.3390/su12072801 .
doi: 10.3390/su12072801
31 Zhang Qiang, Zou Xukai, Xiao Fengjin,et al. . Meteorological Drought Grade [S]. Beijing:Standards Press of China,2006.张强,邹旭凯,肖风劲,等.. 气象干旱等级[S]. 北京: 中国标准出版社,2006.
32 Yan Zhizhuang, Li Xianrui, Lin Ke. Investigation of drought in Hainan province[J]. Disaster Reduction in China, 2005(4):28-30.
32 闫志壮, 李先瑞, 林柯. 海南旱灾调查[J]. 中国减灾,2005(4):28-30.
33 Li Weiguang, Yi Xue, Che Xiufen, et al. Dry and wet situation and occurrence characteristics of drought in Hainan island[J]. Meteorological Research and Application,2011,32(S2):53-54.
33 李伟光, 易雪, 车秀芬,等. 海南岛干湿概况与干旱发生特征[J]. 气象研究与应用,2011,32():53-54.
34 Che Xiufen, Zhang Jinghong, Huang Haijing,et al. Study on the climate zoning of Hainan island[J]. Tropical Agricultural Science,2014,34(6):60-65,70.
34 车秀芬,张京红,黄海静, 等. 海南岛气候区划研究[J].热带农业科学,2014,34(6):60-65,70.
35 Zhang Chunhua, Wu Sheng′an. Study on the impact of high temperature on drought in southwestern Hainan island [J]. Advances in Meteorological Science and Technology,2020,10(4):96-101.
35 张春花,吴胜安.高温对海南岛西南部干旱影响研究[J].气象科技进展,2020,10(4):96-101.
36 Zhou L, Zhang J, Wu J, et al. Comparison of remotely sensed and meteorological data-derived drought indices in mid-eastern China[J]. International journal of remote sensing,2012,33(6):1755-1779.
37 Shi K, Toufw Y, Kazama S. Defining homogeneous drought zones based on soil moisture across japan and teleconnections with large-scale climate signals[J]. Journal of Applied Meteorology and Climatology,2022,61(1):43-60.
38 Liu Xianfeng, Zhu Xiufang, Pan Yaozhong, et al. Res-earch progress and prospects of agricultural drought monitoring[J]. Acta Geographica Sinica,2015,70(11):1835-1848.
38 刘宪锋, 朱秀芳, 潘耀忠, 等. 农业干旱监测研究进展与展望[J]. 地理学报,2015,70(11):1835-1848.
[1] 郭佳炜,叶回春,聂超甲,崔贝,黄文江,刘付程,邹彦龙. 基于Sentinel-2的海南耕地复种指数监测及时空变化分析[J]. 遥感技术与应用, 2022, 37(5): 1128-1139.
[2] 崔泽鹏,王志慧,肖培青,申震洲,常晓格,石永磊,马力. 2000—2018年黄河上中游地区蒸散发年际时空变化及其影响因素分析[J]. 遥感技术与应用, 2022, 37(4): 865-877.
[3] 蔡俊飞,赵伟,杨梦娇,詹琪琪,付浩,何坤龙. 基于GLASS数据的青藏高原2001—2018年蒸散发时空变化分析[J]. 遥感技术与应用, 2022, 37(4): 888-896.
[4] 刘立越,苗则朗,吴立新. 基于MODIS数据的亚马逊热带雨林火灾时空变化规律研究[J]. 遥感技术与应用, 2022, 37(3): 721-730.
[5] 乔海伟,张彦丽. 融合FY-3C号和FY-4A号卫星数据的积雪面积变化研究—以祁连山区为例[J]. 遥感技术与应用, 2020, 35(6): 1320-1328.
[6] 李荪青,付碧宏. 基于线性光谱混合分析的乌鲁木齐不透水层提取及其时空变化分析[J]. 遥感技术与应用, 2020, 35(4): 962-974.
[7] 龙爽,郭正飞,徐粒,周华真,方伟华,许映军. 基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J]. 遥感技术与应用, 2020, 35(2): 326-334.
[8] 郑贵洲,熊良超,廖艳雯,王红平. 利用MODIS数据反演南海南部海表温度及时空变化分析[J]. 遥感技术与应用, 2020, 35(1): 132-140.
[9] 王莹莹, 袁金国, 张莹, 吴朝阳. 中国温带地区植被物候期时空变化特征及对总初级生产力的影响[J]. 遥感技术与应用, 2019, 34(2): 377-388.
[10] 冯姣姣, 王维真, 李净, 刘雯雯. 基于BP神经网络的华东地区太阳辐射模拟及时空变化分析[J]. 遥感技术与应用, 2018, 33(5): 881-889.
[11] 茹皮亚·西拉尔, 杨辽. 新疆棉花物候时空变化遥感监测及气温影响分析[J]. 遥感技术与应用, 2018, 33(5): 923-931.
[12] 郝斌飞,韩旭军,马明国,刘一韬,李世卫. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用, 2018, 33(4): 600-611.
[13] 郝建盛,张飞云,赵鑫,刘云霄,李兰海. 基于GRACE监测数据的伊犁—巴尔喀什湖盆地水储量变化特征及影响因素[J]. 遥感技术与应用, 2017, 32(5): 883-892.
[14] 唐志光,王建,王欣,彭焕华,梁继. 近15年天山地区积雪时空变化遥感研究[J]. 遥感技术与应用, 2017, 32(3): 556-563.
[15] 杨志刚,达娃,除多. 近15 a青藏高原积雪覆盖时空变化分析[J]. 遥感技术与应用, 2017, 32(1): 27-36.