1 |
Seneviratne S I, Corti T, Davin E L, et al. Investigating soil moisture-climate interactions in a changing climate: A review[J]. Earth-Science Reviews, 2010,99(3-4):125-161. DOI:10.1016/j.earscirev.2010.02.004 .
doi: 10.1016/j.earscirev.2010.02.004
|
2 |
Zhao Xingkai, Li Zengyao, Zhu Qingke. Response of soil moisture on climate characteristics based on SPI and SPEI in Loess region of Northern Shaanxi[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016. 47(8): 155-163.赵兴凯, 李增尧, 朱清科. 基于SPI和SPEI陕北黄土区土壤水分对气候特征的响应[J]. 农业机械学报, 2016, 47(8):155-163.
|
3 |
Wang L, Xie Z, Jia B,et al. Contributions of climate change and groundwater extraction to soil moisture trends[J]. Earth System Dynamics,2019,10(3):599-599. DOI:10.5194/esd- 10-599-2019 .
doi: 10.5194/esd- 10-599-2019
|
4 |
Herceg A, Nolz R, Kalicz P, et al. Predicting impacts of climate change on evapotranspiration and soil moisture for a site with sub-humid climate[J]. Journal of Hydrology and Hydromechanics,2019,67(4):384-392. DOI:10.2478/johh-2019-0017 .
doi: 10.2478/johh-2019-0017
|
5 |
Gruber A, Scanlon T, van der Schalie R, et al. Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology[J]. Earth System Science Data,2019,11(2):717-739. DOI:10.5194/essd-11-717-2019 .
doi: 10.5194/essd-11-717-2019
|
6 |
Leeper R D, Bell J E, Palecki M A.A description and evaluation of US climate reference network standardized soil moisture dataset[J]. Journal of Applied Meteorology and Climatology,2019,58(7):1417-1428. DOI:10.1175/JAMC-D-18-0269.1 .
doi: 10.1175/JAMC-D-18-0269.1
|
7 |
Li Yuanshou, Jia Xiaohong, Qi Yanjun, et al. Sensitivity of soil evapotranspiration to climate change in the permafrost area[J]. Plateau Meteorology, 2019,38(6):1293-1299.
|
7 |
李元寿, 贾晓红, 齐艳军,等. 多年冻土区土壤蒸散发对气候变化的敏感性分析[J]. 高原气象, 2019,38(6):1293-1299.
|
8 |
Kerr Y H, Al-Yaari A, Rodriguez-Fernandez N, et al. Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation[J]. Remote Sensing of Environment,2016,180:40-63. DOI:10.1016/j.rse.2016. 02.042 .
doi: 10.1016/j.rse.2016. 02.042
|
9 |
Mecklenburg S, Drusch M, Kaleschke L, et al. ESA’s soil moisture and ocean salinity mission: from science to operational applications[J]. Remote Sensing of Environment, 2016, 180: 3-18. DOI: 10.1016/j.rse.2015.12.025 .
doi: 10.1016/j.rse.2015.12.025
|
10 |
Colliander A, Jackson T J, Bindlish R, et al. Validation of SMAP surface soil moisture products with core validation sites[J]. Remote Sensing of Environment, 2017, 191: 215-231. DOI:10.1016/j.rse.2017.01.021 .
doi: 10.1016/j.rse.2017.01.021
|
11 |
Chan S K, Bindlish R, O’Neill P E, et al. Assessment of the SMAP passive soil moisture product[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4994-5007. DOI: 10.1109/TGRS.2016.2561938 .
doi: 10.1109/TGRS.2016.2561938
|
12 |
Al-Yaari A, Wigneron J-P, Ducharne A, et al. Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land)[J]. Remote Sensing of Environment,2014,152:614-626. DOI:10.1016/j.rse.2014.07.013 .
doi: 10.1016/j.rse.2014.07.013
|
13 |
Leroux D J, Kerr Y H, Bitar A A, et al. Comparison between SMOS, VUA, ASCAT, and ECMWF soil moisture products over four watersheds in U.S.[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1562-1571. DOI: 10.1109/TGRS.2013.2252468 .
doi: 10.1109/TGRS.2013.2252468
|
14 |
Usowicz B, Marczewski W, Usowicz J B, et al. Comparison of surface soil moisture from SMOS satellite and ground measurements[J]. International Agrophysics,2014, 28(3). DOI: 10.2478/intag-2014-0026 .
doi: 10.2478/intag-2014-0026
|
15 |
Jakkila J, Vento T, Rousi T,et al. SMOS soil moisture data validation in the Aurajoki watershed, Finland[J]. Hydrology Research,2014,45(4-5):684-702. DOI:10.2166/nh.2013. 234 .
doi: 10.2166/nh.2013. 234
|
16 |
Gonzalez-Zamora A, Sanchez N, Martinez-Fernandez J, et al. Long-term SMOS soil moisture products: a comprehensive evaluation across scales and methods in the Duero Basin (Spain)[J]. Physics and Chemistry of the Earth,2015,83-84:123-136. DOI:10.1016/j.pce.2015.05.009 .
doi: 10.1016/j.pce.2015.05.009
|
17 |
Chakravorty A, Chahar B R, Sharma O P, et al. A regional scale performance evaluation of SMOS and ESA-CCI soil moisture products over India with simulated soil moisture from MERRA-Land[J]. Remote Sensing of Environment, 2016, C(186): 514-527. DOI: 10.1016/j.rse.2016.09.011 .
doi: 10.1016/j.rse.2016.09.011
|
18 |
Yang Na, Cui Huizhen, Xiang Feng. Validation study on SMOS L2 soil moisture product in agricultural area of China[J]. Journal of Henan Polytechnic University (Natural Science Edition), 2015,34(2):287-291.
|
18 |
杨娜,崔慧珍,向峰.SMOS L2土壤水分数据产品在我国农区的验证[J]. 河南理工大学学报(自然科学版),2015,34(2):287-291.
|
19 |
Peng J, Niesel J, Loew A, et al. Evaluation of satellite and reanalysis soil moisture products over Southwest China using ground-based measurements[J]. Remote Sensing, 2015, 7(11): 15729-15747. DOI: 10.3390/rs71115729 .
doi: 10.3390/rs71115729
|
20 |
Pierdicca N, Fascetti F, Pulvirenti L, et al. Analysis of ASCAT, SMOS, in-situ and land model soil moisture as a regionalized variable over Europe and North Africa[J]. Remote Sensing of Environment,2015,170:280-289. DOI: 10.1016/j.rse.2015.09.005 .
doi: 10.1016/j.rse.2015.09.005
|
21 |
Louvet S, Pellarin T, Al Bitar A, et al. SMOS soil moisture product evaluation over West-Africa from local to regional scale[J]. Remote Sensing of Environment, 2015, 156: 383-394. DOI: 10.1016/j.rse.2014.10.005 .
doi: 10.1016/j.rse.2014.10.005
|
22 |
Kedzior M, Zawadzki J. Comparative study of soil moisture estimations from SMOS satellite mission, GLDAS database, and cosmic-ray neutrons measurements at COSMOS station in Eastern Poland[J]. Geoderma, 2016, 283: 21-31. DOI: 10.1016/j.geoderma.2016.07.023 .
doi: 10.1016/j.geoderma.2016.07.023
|
23 |
Al Bitar A, Mialon A, Kerr Y H, et al. The global SMOS Level 3 daily soil moisture and brightness temperature maps[J]. Earth System Science Data, 2017, 9(1): 293-315. DOI: 10.5194/essd-9-293-2017 .
doi: 10.5194/essd-9-293-2017
|
24 |
Xiang Yiheng, Zhang Mingmin, Zhang Lanhui, et al. Validation of SMOS soil moisture products on different vegetation types in Qilian Mountain[J]. Remote Sensing Technology and Application,2017,32(5):835-843.
|
24 |
向怡衡, 张明敏, 张兰慧,等. 祁连山区不同植被类型上的SMOS遥感土壤水分产品质量评估[J]. 遥感技术与应用,2017,32(5):835-843.
|
25 |
Rodriguez-Fernandez N J, Sabater J M, Richaume P, et al. SMOS near-real-time soil moisture product: processor overview and first validation results[J]. Hydrology and Earth System Sciences, 2017, 21(10): 5201-5216. DOI: 10.5194/hess-21-5201-2017 .
doi: 10.5194/hess-21-5201-2017
|
26 |
Chen F, Crow W T, Bindlish R, et al. Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple collocation[J]. Remote Sensing of Environment, 2018, 214: 1-13. DOI: 10.1016/j.rse.2018.05.008 .
doi: 10.1016/j.rse.2018.05.008
|
27 |
Zhang L, He C, Zhang M, et al. Evaluation of the SMOS and SMAP soil moisture products under different vegetation types against two sparse in situ networks over arid mountainous watersheds, Northwest China[J]. Science China Earth Sciences, 2019, 62(4): 703-718. DOI: 10.1007/s11430-018-9308-9 .
doi: 10.1007/s11430-018-9308-9
|
28 |
Ma H, Zeng J, Chen N, et al. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: a comprehensive assessment using global ground-based observations[J]. Remote Sensing of Environment, 2019, 231: 111215. DOI: 10.1016/j.rse.2019.111215 .
doi: 10.1016/j.rse.2019.111215
|
29 |
Alyaari A, Wigneron J P, Dorigo W, et al. Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ISMN ground-based measurements[J]. Remote Sensing of Environment, 2019, 224: 289-303. DOI: 10.1016/j.rse.2019.02.008 .
doi: 10.1016/j.rse.2019.02.008
|
30 |
Kerr Y H, Waldteufel P, Richaume P, et al. The SMOS soil moisture retrieval algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1384-1403. DOI: 10.1109/TGRS.2012.2184548 .
doi: 10.1109/TGRS.2012.2184548
|
31 |
Wigneron J-P, Jackson T J, O’Neill P, et al. Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[J]. Remote Sensing of Environment,2017,192:238-262. DOI:10.1016/j.rse.2017. 01.024 .
doi: 10.1016/j.rse.2017. 01.024
|
32 |
Zhao Tianjie. Recent advances of L-band application in the passive microwave remote sensing of soil moisture and its prospects[J]. Progress in Geography, 2018,37(2):198-213.
|
32 |
赵天杰. 被动微波反演土壤水分的L波段新发展及未来展望[J]. 地理科学进展, 2018,37(2):198-213.
|
33 |
Rudiger C, Walker J P, Kerr Y H. On the airborne spatial coverage requirement for microwave satellite validation[J]. IEEE Geoscience and Remote Sensing Letters,2011,8(4): 824-828. DOI: 10.1109/LGRS.2011.2116766 .
doi: 10.1109/LGRS.2011.2116766
|
34 |
Ye N, Walker J P, Bindlish R, et al. Evaluation of SMAP downscaled brightness temperature using SMAPEx-4/5 airborne observations[J]. Remote Sensing of Environment, 2019, 221: 363-372. DOI: 10.1016/j.rse.2018.11.033 .
doi: 10.1016/j.rse.2018.11.033
|
35 |
Albergel C, Zakharova E, Calvet J-C, et al. A first assessment of the SMOS data in Southwestern France using in situ and airborne soil moisture estimates: The CAROLS airborne campaign[J]. Remote Sensing of Environment, 2011, 115(10): 2718-2728. DOI: 10.1016/j.rse.2011.06.012 .
doi: 10.1016/j.rse.2011.06.012
|
36 |
Bircher S, Balling J E, Skou N, et al. Validation of SMOS brightness temperatures during the HOBE airborne campaign, Western Denmark[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1468-1482. DOI: 10.1109/TGRS.2011.2170177 .
doi: 10.1109/TGRS.2011.2170177
|
37 |
Schlenz F, Dall’Amico J T, Loew A, et al. Uncertainty assessment of the SMOS validation in the upper danube catchment[J]. IEEE Transactions on Geoscience and Remote Sensing,2012,50(5):1517-1529. DOI:10.1109/TGRS.2011. 2171694 .
doi: 10.1109/TGRS.2011. 2171694
|
38 |
Magagi R, Berg A A, Goita K, et al. Canadian experiment for soil moisture in 2010 (CanEx-SM10): Overview and preliminary results[J]. IEEE Transactions on Geoscience and Remote Sensing,2013,51(1):347-363. DOI:10.1109/TGRS. 2012.2198920 .
doi: 10.1109/TGRS. 2012.2198920
|
39 |
Li Dazhi, Jin Rui, Che Tao, et. al. Soil moisture retrieval from airborne PLMR and MODIS products in the Zhangye oasis of middle stream of Heihe River Basin, China[J]. Advances in Earth Science, 2014,29(2):295-305.
|
39 |
李大治, 晋锐, 车涛, 等. 联合机载PLMR微波辐射计和MODIS产品反演黑河中游张掖绿洲土壤水分研究[J]. 地球科学进展,2014,29(2): 295-305.
|
40 |
Das N N, Entekhabi D, Njoku E G, et al. Tests of the SMAP combined radar and radiometer algorithm using airborne field campaign observations and simulated cata[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(4):2018-2028. DOI:10.1109/TGRS.2013. 2257605 .
doi: 10.1109/TGRS.2013. 2257605
|
41 |
Montzka C, Jagdhuber T, Horn R, et al. Investigation of SMAP fusion algorithms with airborne active and passive L-band microwave remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 3878-3889. DOI: 10.1109/TGRS.2016.2529659 .
doi: 10.1109/TGRS.2016.2529659
|
42 |
Colliander A, Jackson T, Mcnairn H, et al. Comparison of airborne Passive and Active L-band System (PALS) brightness temperature measurements to SMOS observations during the SMAP validation experiment 2012 (SMAPVEX12)[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 801-805. DOI: 10.1109/LGRS.2014.2362889 .
doi: 10.1109/LGRS.2014.2362889
|
43 |
Colliander A, Cosh M H, Misra S,et al.Comparison of high-re-solution airborne soil moisture retrievals to SMAP soil moisture during the SMAP validation experiment 2016 (SMAPVEX16)[J]. Remote Sensing of Environment, 2019, 227: 137-150. DOI: 10.1016/j.rse.2019.04.004 .
doi: 10.1016/j.rse.2019.04.004
|
44 |
Zhao T, Shi J, Lv L, et al. Soil moisture experiment in the Luan River supporting new satellite mission opportunities[J]. Remote Sensing of Environment, 2020, 240, 111680. DOI: 10.1016/j.rse.2020.111680 .
doi: 10.1016/j.rse.2020.111680
|
45 |
McMullan K D, Brown M A, Martin-Neira M, et al. SMOS: The payload[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(3): 594-605. DOI: 10.1109/TGRS.2007.914809 .
doi: 10.1109/TGRS.2007.914809
|
46 |
Kerr Y H, Waldteufel P, Wigneron J, et al. The SMOS mission: New tool for monitoring key elements of the global water cycle[J]. Proceedings of the IEEE, 2010, 98(5): 666-687. DOI: 10.1109/JPROC.2010.2043032 .
doi: 10.1109/JPROC.2010.2043032
|
47 |
Zhao T, Shi J, Bindlish R, et al. Refinement of SMOS multiangular brightness temperature toward soil moisture retrieval and its analysis over reference targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2015,8(2):589-603. DOI:10.1109/JSTARS. 2014.2336664 .
doi: 10.1109/JSTARS. 2014.2336664
|
48 |
Entekhabi D, Njoku E, O’Neill P, et al. The soil moisture Active/Passive Mission (SMAP)[J]. Proceedings of the IEEE,2010,98(5):704-716. DOI:10.1109/JPROC.2010.2043918 .
doi: 10.1109/JPROC.2010.2043918
|
49 |
Mohammed P N, Aksoy M, Piepmeier J R, et al. SMAP L-band microwave radiometer: RFI mitigation prelaunch analysis and first year on-orbit observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6035-6047. DOI: 10.1109/TGRS.2016.2580459 .
doi: 10.1109/TGRS.2016.2580459
|
50 |
Zhao T, Hu L, Shi J, et al. Soil moisture retrievals using L-band radiometry from variable angular ground-based and airborne observations[J]. Remote Sensing of Environment, 2020, 248: 111958. DOI: 10.1016/j.rse.2020.111958 .
doi: 10.1016/j.rse.2020.111958
|