遥感技术与应用 2022, Vol. 37 Issue (6): 1414-1426 DOI: 10.11873/j.issn.1004-0323.2022.6.1414 |
土壤水分专栏 |
|
|
|
|
北方典型区域遥感和模型土壤水分产品的对比及评估 |
黄钰玲1,2( ),刘凯1,3,王树东1,王大成1,苑峰4,5,王保林4,景文4,王伟6( ) |
1.中国科学院空天信息创新研究院,北京 100094 2.中国科学院大学,资源与环境学院,北京 100049 3.中国科学院地理科学与资源研究所,北京 100101 4.内蒙古小草数字生态产业有限公司,内蒙古 呼和浩特 010000 5.内蒙古峰茂科技创新有限公司,内蒙古 呼和浩特 010000 6.河北金融学院,河北 保定 071000 |
|
Comparison and Assessment of Remote Sensing and Model-based Soil Moisture Products in Typical Regions of North China |
Yuling Huang1,2( ),Kai Liu1,3,Shudong Wang1,Dacheng Wang1,Feng Yuan4,5,Baolin Wang4,Wen Jing4,wei Wang6( ) |
1.Aerospace Information Research Institute,Beijing 100094,China 2.University of Chinese Academy of Sciences,College of Resources and Environment,Beijing 100049,China 3.Institute of Geographic Sciences and Natural Resources Research,Beijing 100101,China 4.Inner Mongolia Xiaocao Digital Ecological Industry Limited Company,Hohhot 010000,China 5.Inner Mongolia Fengmao Technology Limited Company,Hohhot 010000,China 6.Hebei Finance University,Baoding 071000,China |
引用本文:
黄钰玲,刘凯,王树东,王大成,苑峰,王保林,景文,王伟. 北方典型区域遥感和模型土壤水分产品的对比及评估[J]. 遥感技术与应用, 2022, 37(6): 1414-1426.
Yuling Huang,Kai Liu,Shudong Wang,Dacheng Wang,Feng Yuan,Baolin Wang,Wen Jing,wei Wang. Comparison and Assessment of Remote Sensing and Model-based Soil Moisture Products in Typical Regions of North China. Remote Sensing Technology and Application, 2022, 37(6): 1414-1426.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.6.1414
或
http://www.rsta.ac.cn/CN/Y2022/V37/I6/1414
|
1 |
Koster R D, Dirmeyer P A, Guo Z, et al. Regions of strong coupling between soil moisture and precipitation[J]. Science, 2004,305(5687):1138-1140. DOI:10.1126/science.1100217 .
doi: 10.1126/science.1100217
|
2 |
Tan Xiangdong, Pang Zhiguo, Jiang Wei, et al. Progress and development trend of soil moisture microwave remote sensing retrieval method[J]. Journal of Geo-information Science, 2021,23(10):1728-1742.
|
2 |
覃湘栋,庞治国,江威,等.土壤水分微波反演方法进展和发展趋势[J].地球信息科学学报,2021,23(10):1728-1742.
|
3 |
Wagner W, Hahn S, Kidd R, et al. The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications[J]. Meteorologische Zeitschrift, 2013, 22(1):5-33. DOI:10.1127/0941-2948/2013/0399 .
doi: 10.1127/0941-2948/2013/0399
|
4 |
Njoku E G, Jackson T J, Lakshmi V, et al. Soil moisture retrieval from AMSR-E[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 215-229. DOI:10.1109/TGRS.2002.808243 .
doi: 10.1109/TGRS.2002.808243
|
5 |
Kerr Y H, Waldteufel P, Wigneron J P, et al. The SMOS mission: New tool for monitoring key elements of the global water cycle[J]. Proceedings of the IEEE, 2010, 98(5): 666-687. DOI:10.1109/JPROC.2010.2043032 .
doi: 10.1109/JPROC.2010.2043032
|
6 |
Entekhabi D, Njoku E G, O"Neill P E, et al. The Soil Moisture Active Passive (SMAP) mission[J]. Proceedings of the IEEE,2010,98(5):704-716. DOI:10.1109/JPROC. 2010. 2043918 .
doi: 10.1109/JPROC. 2010. 2043918
|
7 |
Liu Y Y, Dorigo W A, Parinussa R M, et al. Trend-preserving blending of passive and active microwave soil moisture retrievals[J]. Remote Sensing of Environment, 2012, 123: 280-297. DOI:10.1016/j.rse.2012.03.014 .
doi: 10.1016/j.rse.2012.03.014
|
8 |
Dirmeyer P A, Gao X, Zhao M, et al. GSWP-2: Multimodel analysis and implications for our perception of the land surface[J]. Bulletin of the American Meteorological Society, 2006,87(10):1381-1398.DOI:10.1175/BAMS-87-10-1381 .
doi: 10.1175/BAMS-87-10-1381
|
9 |
Kim H, Parinussa R, Konings A G, et al. Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products[J]. Remote Sensing of Environment, 2018, 204: 260-275. DOI:10.1016/j.rse.2017.10.026 .
doi: 10.1016/j.rse.2017.10.026
|
10 |
Zeng J, Li Z, Chen Q, et al. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations[J]. Remote Sensing of environment, 2015, 163: 91-110. DOI:10.1016/j.rse.2015.03.008 .
doi: 10.1016/j.rse.2015.03.008
|
11 |
Jiang B, Su H, Liu K, et al. Assessment of remotely sensed and modelled soil moisture data products in the US Southern Great Plains[J]. Remote Sensing, 2020, 12(12): 2030. DOI:10.3390/rs12122030 .
doi: 10.3390/rs12122030
|
12 |
Li M, Wu P, Ma Z. A comprehensive evaluation of soil moisture and soil temperature from third‐generation atmospheric and land reanalysis data sets[J]. International Journal of Climatology,2020,40(13):5744-5766. DOI:10.1002/joc.6549 .
doi: 10.1002/joc.6549
|
13 |
Liu Huan, Liu Ronggao, Liu Shiyang. Drought remote sensing monitoring method and its application development[J]. Journal of Geo-information Science, 2012,14(2):232-239.
|
13 |
刘欢,刘荣高,刘世阳.干旱遥感监测方法及其应用发展[J].地球信息科学学报,2012,14(2):232-239.
|
14 |
Brocca L, Melone F, Moramarco T, et al. Soil moisture temporal stability over experimental areas in Central Italy[J]. Geoderma, 2009, 148(3-4): 364-374.DOI: 10.1016/j.geoderma.2008.11.004 .
doi: 10.1016/j.geoderma.2008.11.004
|
15 |
Brocca L, Hasenauer S, Lacava T, et al. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe[J]. Remote Sensing of Environment,2011,115(12):3390-3408. DOI:10. 1016/j.rse.2011.08.003 .
doi: 10. 1016/j.rse.2011.08.003
|
16 |
Draper C S, Walker J P, Steinle P J, et al. An evaluation of AMSR–E derived soil moisture over Australia[J]. Remote Sensing of Environment, 2009, 113(4): 703-710. DOI:10.1016/j.rse.2008.11.011 .
doi: 10.1016/j.rse.2008.11.011
|
17 |
Lü S, Zeng Y, Wen J, et al. Estimation of penetration depth from soil effective temperature in microwave radiometry[J]. Remote Sensing,2018,10(4):519.DOI:10.3390/rs10040519 .
doi: 10.3390/rs10040519
|
18 |
Owe M, de Jeu R, Holmes T. Multisensor historical climatology of satellite‐derived global land surface moisture[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F1). DOI:10.1029/2007JF000769 .
doi: 10.1029/2007JF000769
|
19 |
Njoku E G, Ashcroft P, Chan T K, et al. Global survey and statistics of radio-frequency interference in AMSR-E land observations[J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(5):938-947. DOI:10.1109/TGRS. 2004. 837507 .
doi: 10.1109/TGRS. 2004. 837507
|
20 |
Wigneron J P, Jackson T J, O'neill P, et al. Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[J]. Remote Sensing of Environment,2017,192:238-262.DOI:10.1016/j.rse.2017.01.024 .
doi: 10.1016/j.rse.2017.01.024
|
21 |
Dorigo W A, Scipal K, Parinussa R M, et al. Error characterisation of global active and passive microwave soil moisture datasets[J]. Hydrology and Earth System Sciences, 2010, 14(12): 2605-2616. DOI:10.5194/hessd-7-5621-2010 .
doi: 10.5194/hessd-7-5621-2010
|
22 |
Gruber A, Scanlon T, van der Schalie R, et al. Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology[J]. Earth System Science Data, 2019, 11(2): 717-739. DOI:10.5194/essd-11-717-2019 .
doi: 10.5194/essd-11-717-2019
|
23 |
Dorigo W A, Gruber A, De Jeu R A M, et al. Evaluation of the ESA CCI soil moisture product using ground-based observations[J]. Remote Sensing of Environment, 2015, 162: 380-395. DOI:10.1016/j.rse.2014.07.023 .
doi: 10.1016/j.rse.2014.07.023
|
24 |
Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis [J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049. DOI:10.1002/qj.3803 .
doi: 10.1002/qj.3803
|
25 |
Dee D P, Uppala S M, Simmons A J, et al. The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society,2011,137(656):553-597. DOI:10.1002/qj.828 .
doi: 10.1002/qj.828
|
26 |
Nijssen B, Shukla S, Lin C, et al. A prototype global drought information system based on multiple land surface models[J]. Journal of Hydrometeorology,2014,15(4):1661-1676. DOI:10.1175/jhm-d-13-090.1 .
doi: 10.1175/jhm-d-13-090.1
|
27 |
Entekhabi D, Reichle R H, Koster R D, et al. Performance metrics for soil moisture retrievals and application requirements[J]. Journal of Hydrometeorology, 2010, 11(3): 832-840. DOI:10.1175/2010jhm1223.1 .
doi: 10.1175/2010jhm1223.1
|
28 |
Ran Jinjiang, Ji Mingxia, Huang Jianping, et al. Characteristics and factors of climate change in arid and semi-arid areas over Northern China in the recent 60 years[J]. Journal of Lanzhou University (Natural Sciences Edition), 2014, 50(1): 46-53.
|
28 |
冉津江,季明霞,黄建平,等.中国北方干旱区和半干旱区近60年气候变化特征及成因分析[J]. 兰州大学学报 (自然科学版), 2014, 50(1): 46-53.
|
29 |
Ding Xu, Lai Xin, Fan Guangzhou, et al. Analysis on the applicability of reanalysis soil temperature and moisture datasets over Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(3): 626-641.
|
29 |
丁旭,赖欣,范广洲,等.再分析土壤温湿度资料在青藏高原地区适用性的分析[J]. 高原气象, 2018, 37(3): 626-641.
|
30 |
Ma H, Zeng J, Chen N, et al. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations[J]. Remote Sensing of Environment, 2019, 231: 111215. DOI:10.1016/j.rse.2019.111215 .
doi: 10.1016/j.rse.2019.111215
|
31 |
Al-Yaari A, Wigneron J P, Ducharne A, et al. Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data Assimilation System estimates[J]. Remote Sensing of Environment,2014,149:181-195.DOI:10.1016/j.rse.2014.04.006 .
doi: 10.1016/j.rse.2014.04.006
|
32 |
Wang Xiukang, Qi Xingchao, Liu Yanli,et al.Soil structure and its effect on soil water holding property under three land use patterns in piedmont plain of Mountain Tai[J]. Journal of Natural Resources,2018,33(1):63-74.
|
32 |
王修康,戚兴超,刘艳丽,等.泰山山前平原三种土地利用方式下土壤结构特征及其对土壤持水性的影响[J].自然资源学报, 2018, 33(1): 63-74.
|
33 |
Gruber A, Scanlon T, van der Schalie R, et al. Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology[J]. Earth System Science Data, 2019, 11(2): 717-739. DOI:10.5194/essd-11-717-2019 .
doi: 10.5194/essd-11-717-2019
|
34 |
Jeu R, Wagner W, Holmes T, et al. Global soil moisture patterns observed by space borne microwave radiometers and scatterometers[J]. Surveys in Geophysics, 2008, 29(4):399-420. DOI:10.1007/s10712-008-9044-0 .
doi: 10.1007/s10712-008-9044-0
|
35 |
Wang Y W, Leng P, Peng J, et al. Global assessments of two blended microwave soil moisture products CCI and SMOPS with in-situ measurements and reanalysis data [J]. International Journal of Applied Earth Observation and Geoinformation,2021,94:102234. DOI:10.1016/j.jag.2020.102234 .
doi: 10.1016/j.jag.2020.102234
|
36 |
Lu Zheng, Chai Linna, Zhang Tao, et al. Evaluation of AMSR2 retrievals using observation of soil moisture network on the upper and middle reaches of Heihe River Basin[J]. Remote Sensing Technology and Application, 2017, 32(2): 324-337.
|
36 |
陆峥, 柴琳娜, 张涛, 等. AMSR2土壤水分产品在黑河流域中上游的验证 [J]. 遥感技术与应用, 2017, 32(2): 324-337.
|
37 |
Wang Hao, Hao Ying, Yuan Song,et al. Applicability assessment of SMAP soil moisture products in the Huaihe River Basin[J]. Remote Sensing Technology and Application, 2021, 36(5): 1009-1021.
|
37 |
王皓,郝莹,袁松,等.SMAP 土壤水分产品在淮河流域的适用性评估[J].遥感技术与应用, 2021, 36(5): 1009-1021.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|