Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (6): 1472-1481    DOI: 10.11873/j.issn.1004-0323.2022.6.1472
遥感应用     
三江源地区高寒冬季枯草遥感监测方法研究
段旭辉1(),徐维新1(),梁好1,张娟2,代娜1,肖强智1,王淇玉1
1.成都信息工程大学 资源环境学院,四川 成都 610225
2.青海省气象科学研究所,青海 西宁 810001
Study on Remote Sensing Monitoring Method of Dead Alpine Meadow in Winter of Sanjiangyuan Region
Xuhui Duan1(),Weixin Xu1(),Hao Liang1,Juan Zhang2,na Dai1,Qiangzhi Xiao1,Qiyu Wang1
1.College of Resources and Environment,Chengdu University of Information Engineering,Chengdu 610225,China
2.Qinghai Institute of Meteorological Sciences,Xining 810001,China
 全文: PDF(4755 KB)   HTML
摘要:

冬季枯草是遥感监测服务的一个空白领域,通过揭示枯草的独特光谱特征、建立高寒冬季枯草监测技术方法等一系列针对高寒冬季枯草的研究,可推动高寒地区冬季牧草遥感监测新的服务领域与服务时段的发展,为青藏高原生态环境保护与管理提供创新性技术支持。基于2016年8月和11月青藏高原三江源腹地的玉树隆宝自然保护区两次野外观测试验,获取了72个鲜草与枯草样方的地面高光谱实测数据。枯草光谱特征的分析发现,在350—1 350 nm的可见光至近红外波段,枯草反射光谱呈显著的线性分布特征,其反射率自350 nm处的1.5%线性增长至1 350 nm附近约38%。枯草与鲜草光谱存在显著的差异性,枯草完全丧失了绿色植被红光强吸收、绿光强反射的光谱特征,其红光波段反射率约为鲜草的4.9倍,而绿光波段反射率也接近1.4倍,760—1 350 nm近红外波段一致的高反射也不复存在。基于枯草独特的光谱特征,建立了基于MODIS卫星波段5与波段3归一化的枯草指数DGVI(Dead Grass Vegetation Index)。地面样本和卫星数据的验证表明,DGVI可有效识别枯草,其估算值与实测值相关系数达到0.68(P<0.05),且明显优于现有的常用植被指数,可用于冬季高寒枯草的遥感识别与生物量监测。

关键词: 高寒枯草植被指数敏感波段青藏高原    
Abstract:

Winter dead grass is a blank field of remote sensing monitoring services, by revealing the unique spectral characteristics of dead grass, establish alpine dead grass monitoring technology and a series of research, can promote alpine region dead grass remote sensing monitoring new services and the development of service time, for the Qinghai-Tibetan plateau ecological environment protection and management to provide innovative technical support. Based on two field observation tests in August and November 2016 in area of Sanjiangyuan in the hinterland of the Qinghai-Tibet Plateau, 72 ground hyperspectry data were obtained including the samples of fresh grass and dead grass. A significant linear pattern of the reflect spectrums for dead grass showed during from 1.5% at 350nm to about 38% near 1 350 nm at range of visible and near-infrared spectrum band. There are evidently differences between dead grass and fresh grass in spectral reflectivity, dead grass completely lost spectral characteristics which shown in the green vegetation with a strong absorption in the red band and a weak absorption in the green band, also shown a high reflection in the 760—1 300 nm (near-infrared band). The red light band reflectance is about 4.9 times that of fresh grass, while the green light band reflectivity is nearly 1.4 times. In this study, we provided a normalized Dead Grass Vegetation Index (DGVI) using the band 5 and band 3 according to the MODIS satellite data. It was found that the DGVI can effectively identify dead grass in winter, the correlation coefficient between the measured and estimated data by DGVI reaches 0.68 (P <0.05), and DGVI is significantly better than the general vegetation index. Our study indicated that the DGVI can be used to monitoring for alpine dead grass in winter.

Key words: Dead alpine grass    Vegetation index    Sensitive spectrum    Qinghai-Tibet Plateau
收稿日期: 2021-06-22 出版日期: 2023-02-15
ZTFLH:  P964  
基金资助: 国家自然科学基金项目(41971328);四川省科技厅项目(2022YFS0490);西藏自治区科技计划项目(XZ202102YD 0012C);内蒙古自治区科技计划项目(2021GG0019)
通讯作者: 徐维新     E-mail: 2439701772@qq.com;weixin.xu@cuit.edu.cn
作者简介: 段旭辉(1996-),男,四川资阳人,硕士研究生,主要从事高寒草地遥感监测研究。E?mail:2439701772@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
段旭辉
徐维新
梁好
张娟
代娜
肖强智
王淇玉

引用本文:

段旭辉,徐维新,梁好,张娟,代娜,肖强智,王淇玉. 三江源地区高寒冬季枯草遥感监测方法研究[J]. 遥感技术与应用, 2022, 37(6): 1472-1481.

Xuhui Duan,Weixin Xu,Hao Liang,Juan Zhang,na Dai,Qiangzhi Xiao,Qiyu Wang. Study on Remote Sensing Monitoring Method of Dead Alpine Meadow in Winter of Sanjiangyuan Region. Remote Sensing Technology and Application, 2022, 37(6): 1472-1481.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.6.1472        http://www.rsta.ac.cn/CN/Y2022/V37/I6/1472

图1  十字交叉法光谱观测样方设置示意及不同覆盖等级光谱观测子样方示意图
图2  玉树隆宝试验场2016年11月13日样方1野外高寒枯草不同覆盖度等级反射率光谱曲线
图3  2016年隆宝试验场高寒鲜草、枯草及裸土反射光谱多样本平均曲线
图4  2016年11月隆宝试验场枯草反射率光谱与离散度分布
图5  枯草覆盖度预测模型及其估算结果。
图6  不同植被指数覆盖度估算值与实测值散点图
图7  2016年10月26日三江源地区遥感影像样带和DGVI值分布图
1 Wang Caie, Huang Mei, Wang Wenyin, et al. Characteristics of degraded plant community diversity and aboveground biomass changes along the elevational gradient in the alpine slope area of the Sanjiangyuan region[J]. Ecological Journal, 2022,42(9):3640-2655.
1 王采娥, 黄梅, 王文银, 等. 三江源区高寒坡地退化植物群落多样性和地上生物量沿海拔梯度的变化特征[J]. 生态学报, 2022, 42(9):3640-3655.
2 Aase J, Tanaka D. Reflectances from four wheat residue cover densities as influenced by three soil backgrounds[J]. Agronomy Journal, 1991, 83(4): 753-757.
3 Ma Lin, Li Xuebin, Xie Yingzhong. Litter decomposition and function of grassland ecosystem[J]. Grassland and Animal Husbandry, 2011(12):7-12,24.
3 马琳, 李学斌, 谢应忠. 草地生态系统枯落物分解及功能研究[J]. 草业与畜牧,2011(12):7-12,24.
4 Ma Zhouwen, Wang Yingxin, Wang Hong, et al. Litter and its function in grazing ecosystem[J]. Acta prataculturae Sinica, 2017,26(7):201-212
4 马周文,王迎新,王宏,等.放牧生态系统枯落物及其作用[J]. 草业学报,2017,26(7):201-212.
5 DEáK B, VALKó O, Kelemen A, et al. Litter and graminoid biomass accumulation suppresses weedy forbs in grassland restoration[J]. Plant Biosystems-An International Journal Dealing with All Aspects of Plant Biology,2011,145(3):730-737.
6 Questen H, Eriksson O. Litter species composition influences the performance of seedlings of grassland herbs[J]. Functional Ecology, 2006, 20(3): 522-532.
7 Wang J, Zhao M, Willms W D, et al. Can plant litter affect net primary production of a typical steppe in Inner Mongolia?[J]. Journal of Vegetation Science, 2011, 22(2): 367-376.
8 Li M, Guo X. Long term effect of major disturbances on the Northern Mixed Grassland Ecosystem—A review[J]. Open Journal of Ecology, 2014, 4(4): 214-233.
9 Deutsch E S, Bork E W, Willms W D. Separation of grassland litter and ecosite influences on seasonal soil moisture and plant growth dynamics[J]. Plant Ecology,2010,209(1):135-145.
10 Yao Fuqi, CAI Huanjie, Wang Haijiang, et al. Correlation between canopy height spectral characteristics and coverage of winter wheat[J]. Journal of Agricultural Machinery, 2012,43 (7):156-162.
10 姚付启, 蔡焕杰, 王海江, 等. 冬小麦冠层高光谱特征与覆盖度相关性研究[J]. 农业机械学报,2012,43(7):156-162.
11 Liang Hui, He Jing, Lei Junjie. UAV hyperspectral maize canopy macrospot surveillance[J]. Spectroscopy and Spectroscopic Analysis,2020,40(6):1965-1972.
11 梁辉, 何敬, 雷俊杰. 无人机高光谱的玉米冠层大斑病监测[J]. 光谱学与光谱分析, 2020,40(6):1965-1972.
12 Luo Shanjun, He Yingbin, Duan Dingding, et al. Continuous removal method for the analysis of different potato varieties[J]. Spectroscopy and Spectral Analysis, 2018,38(10):3231-3237.
12 罗善军, 何英彬, 段丁丁, 等. 连续统去除法分析不同马铃薯品种高光谱差异性[J]. 光谱学与光谱分析, 2018, 38(10): 3231-3237.
13 Zhu Mengyuan, Yang Hongbing, Li Zhiwei. Hyperspectral images and early detection and identification of rice sheath blight with chlorophyll content[J]. Spectroscopy and Spectral Analysis, 2019,39(6): 1898-1904.
13 朱梦远, 杨红兵, 李志伟. 高光谱图像和叶绿素含量的水稻纹枯病早期检测识别[J]. 光谱学与光谱分析, 2019, 39(6): 1898-1904.
14 Mao Hengchang. Research progress in the application of hyperspectral technology in agricultural remote sensing[J]. Southern Agricultural Machinery, 2017,48(22): 88.
14 茅恒昌. 高光谱技术在农业遥感中的应用研究进展[J]. 南方农机, 2017, 48(22): 88.
15 Zhang Chunmei, Zhang Jianming. Analysis of grassland in arid areas based on hyperspectral images[J]. Spectroscopy and Spectral Analysis,2012,32(2):445-448.
15 张春梅, 张建明. 基于高光谱影像的干旱区草地光谱特征分析[J]. 光谱学与光谱分析, 2012,32(2):445-448.
16 Overholt K, Cabrera J, Kurzawski A, et al. Characterization of fuel properties and fire spread rates for little bluestem grass[J]. Fire Technology, 2014, 50(1): 9-38.
17 Overholt K, Kurzawski A, Cabrera J, et al. Fire behavior and heat fluxes for lab-scale burning of little bluestem grass[J]. Fire Safety Journal, 2014, 67(1): 70-81.
18 Varga T A, Asner G P. Hyperspectral and LiDAR remote sensing of fire fuels in Hawaii Volcanoes National Park[J]. Ecological Applications, 2008, 18(3): 613-623.
19 Murphy B P, Bradstock R A, Boer M M, et al. Fire regimes of Australia:A pyrogeographic model system[J]. Journal of Biogeography, 2013, 40(6): 1048-1058.
20 Zheng X Z, Hongyan Z, Zhiqiang F, et al. A method for estimating the amount of dead grass fuel based on spectral reflectance characteristics[J]. International Journal of Wildland Fire, 2015, 24(7): 940-948.
21 Wu Qiaoyan, Tong Zhijun, Zhang Jiguang, et al. Optimization layout of Xilin Gol League Grassland based on GIS[J]. Disaster Science, 2010,25(3): 86-89.
21 武巧彦, 佟志军, 张继权, 等. 基于GIS的锡林郭勒盟草原火灾救援物资库优化布局[J]. 灾害学, 2010, 25(3): 86-89.
22 Zhang Jiquan, Cui Liang, Tong Zhijun, et al. Study on hulunbuir grassland fire risk warning threshold based on grid GIS and optimal segmentation method[J]. System Engineering Theory and Practice,2013,33(3):770-775.
22 张继权,崔亮,佟志军, 等. 基于格网GIS与最优分割法的呼伦贝尔草原火灾风险预警阈值研究[J]. 系统工程理论与实践,2013,33(3):770-775.
23 Zhang Jiquan, Fan Jiubo, Liu Xingpeng, et al. Evaluation and prediction of grassland fire hazards in Hulunbuir, Inner Mongolia[J]. Disaster Science, 2010,25(1):35-38.
23 张继权, 范久波, 刘兴朋, 等. 内蒙古呼伦贝尔市草原火灾危害度评价及预测[J]. 灾害学, 2010, 25(1):35-38.
24 Zhang Jiquan, Zhang Hui, Tong Zhijun, et al. Fire disaster evaluation and classification of the grassland in northern China[J]. Grass Industry Journal, 2007,16(6): 121-128.
24 张继权, 张会, 佟志军, 等. 中国北方草原火灾灾情评价及等级划分[J]. 草业学报, 2007,16(6): 121-128.
25 Cui Liang, Zhang Jiquan, Bao Yulong, et al. Hulun Buir grassland fire risk early warning research[J]. Journal of Grass Industry, 2012,21(4):282-292.
25 崔亮, 张继权, 包玉龙, 等. 呼伦贝尔草原火灾风险预警研究[J]. 草业学报, 2012,21(4):282-292.
26 Cui Qingdong. Research on existing estimation technology of natural grass in cold season[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009.
26 崔庆东. 冷季天然草地牧草现存量估测技术研究[D].北京:中国农业科学院, 2009.
27 Wang Xun, Liu Shujie, Zhang Xiaowei, et al. Dynamic monitoring model of forage nutrition in alpine grassland based on HJ-1A/1B data[J]. Remote Sensing of Land and Resources, 2013,25(3):183-188.
27 王迅, 刘书杰, 张晓卫, 等. 基于HJ-1A/1B数据的高寒草地牧草营养动态监测模型[J]. 国土资源遥感, 2013,25(3):183-188.
28 Luo Xiaolong, Tong Zhijun, Zhao Yunsheng, et al. Research on the field spectral identification of different grassland combustible materials and bare soil based on the fractal theory[J]. Spectroscopy and Spectral Analysis, 2016(8):2553-2557.
28 骆晓龙, 佟志军, 赵云升, 等. 基于分形理论的不同草原可燃物及裸土野外光谱识别研究[J]. 光谱学与光谱分析, 2016(8): 2553-2557.
29 Xu Hui, Bao Yuhai, Bao Gang, et al. Hyperspectral remote sensing estimation study of typical grassland hay biomass in Inner Mongolia[J]. Yinshan Journal (Natural Science edition), 2014,28(4): 22-27.
29 胥慧, 包玉海, 包刚, 等. 内蒙古典型草原干草生物量高光谱遥感估算研究[J]. 阴山学刊(自然科学版), 2014, 28(4): 22-27.
30 Liang Hao, Xu Weixin, Duan Xuhui, et al. The threshold rate of the key parameters of the alpine winter dry grass is determined based on the PROSAIL model[J]. Spectroscopy and Spectral Analysis, 2022,42(4):1144-1149.
30 梁好, 徐维新, 段旭辉, 等. 基于PROSAIL模型的高寒冬季枯草关键参数阈值率定[J]. 光谱学与光谱分析, 2022,42(4):1144-1149.
31 Ye Haimin, Rong Mengtian, Deng Xiaodong, et al. A normalized waveform-matching hybrid algorithm based on the absolute value difference[J]. Information Technology,2011,35 (8): 89-93.
31 叶海民, 戎蒙恬, 邓晓东, 等. 基于绝对值差的归一化波形匹配混合算法[J]. 信息技术, 2011,35(8): 89-93.
32 Le Tao, Zhang Hui, Li Guangyu, et al. Study on the spring vegetation dry fall floor cover in eastern Mongolia based on the MODIS band[J]. Science and Technology Bulletin, 2018,34 (10): 269-274.
32 乐涛, 张慧, 李广宇, 等. 基于MODIS波段的蒙东地区春季植被枯落层盖度研究[J]. 科技通报, 2018, 34(10): 269-274.
[1] 杨娜,汤燕杰,张宁馨,张恒杰,徐少博. 基于SMOS、SMAP数据的青藏高原季风及植被生长季土壤水分长消特征研究[J]. 遥感技术与应用, 2022, 37(6): 1373-1384.
[2] 杜绍杰,赵天杰,施建成,马春锋,邹德富,王振,姚盼盼,彭志晴,郑景耀. Sentinel-1和Sentinel-2协同反演地表土壤水分[J]. 遥感技术与应用, 2022, 37(6): 1404-1413.
[3] 方西瑶,蒋玲梅,崔慧珍. 基于Sentinel-1雷达数据的青藏高原地区土壤水分反演研究[J]. 遥感技术与应用, 2022, 37(6): 1447-1459.
[4] 晏红波,李浩,卢献健,王佳华. 基于LST-VI特征空间的喀斯特地区土壤水分时空变化研究[J]. 遥感技术与应用, 2022, 37(6): 1460-1471.
[5] 袁艺溶,王继燕,杨嘉葳,熊俊楠. 基于植被指数的若尔盖高原湿地光合有效辐射吸收比例估算研究[J]. 遥感技术与应用, 2022, 37(5): 1267-1276.
[6] 蔡俊飞,赵伟,杨梦娇,詹琪琪,付浩,何坤龙. 基于GLASS数据的青藏高原2001—2018年蒸散发时空变化分析[J]. 遥感技术与应用, 2022, 37(4): 888-896.
[7] 马佳培,李弘毅. 改进频率分布和风速纠正的青藏高原格点降水数据集(1980~2009年)[J]. 遥感技术与应用, 2022, 37(2): 507-514.
[8] 郭擎,朱丽娅,李安,顾铃燕. 基于NDVI变化检测的滑坡遥感精细识别[J]. 遥感技术与应用, 2022, 37(1): 17-23.
[9] 李淑贞,徐大伟,范凯凯,陈金强,佟旭泽,辛晓平,王旭. 基于无人机与卫星遥感的草原地上生物量反演研究[J]. 遥感技术与应用, 2022, 37(1): 272-278.
[10] 白雪洁,王旭峰,柳晓惠,周旭强. 黑河流域湿地、农田、草地生态系统碳通量变化特征及驱动因子分析[J]. 遥感技术与应用, 2022, 37(1): 94-107.
[11] 除多,郑照军,拉巴卓玛,次丹玉珍. 基于Landsat-8 OLI的青藏高原IMS 4 km雪冰产品精度评价[J]. 遥感技术与应用, 2021, 36(6): 1223-1235.
[12] 马锦典,江洪. SEVI指数消除4种十米级空间分辨率卫星影像地形阴影影响的效果评价[J]. 遥感技术与应用, 2021, 36(5): 1100-1110.
[13] 吴川虎,陶于祥,罗小波. 基于Google Earth Engine的重庆市植被指数长时间序列S-G滤波方法的改进与实现[J]. 遥感技术与应用, 2021, 36(5): 1189-1198.
[14] 杨奥莉,郑东海,文军,陆宣承,杨越,符晴. 青藏高原L波段微波辐射观测与土壤水分反演研究进展[J]. 遥感技术与应用, 2021, 36(5): 983-996.
[15] 罗玲,毛德华,张柏,王宗明,杨桄. 芦苇湿地植被NPP估算方法探索与应用[J]. 遥感技术与应用, 2021, 36(4): 742-750.