Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (1): 51-65    DOI: 10.11873/j.issn.1004-0323.2023.1.0051
定量遥感专栏     
基于LESS模型的异质植被冠层光合有效辐射吸收比与植被指数的关系研究
叶雨洋1,2(),漆建波2(),曹颖2,蒋靖怡2
1.北京师范大学 环境学院,环境模拟与污染控制国家重点联合实验室,北京 100875
2.北京林业大学 省部共建森林培育与保护教育部重点实验室,北京 100083
Relationship between FPARgreen and Several Vegetation Indices in Heterogeneous Vegetation based on LESS Model
Yuyang YE1,2(),Jianbo QI2(),Ying CAO2,Jingyi JIANG2
1.State Key Joint Laboratory of Environment Simulation and Pollution Control,School of Environment,Beijing Normal University,Beijing 100875,China
2.The Key Laboratory for Silviculture and Conservation of Ministry of Education,Beijing Forestry University,Beijing 100083,China
 全文: PDF(10575 KB)   HTML
摘要:

研究植被指数与光合有效辐射吸收比FPAR的定量关系对于提高FPAR反演精度与指导生产实践具有一定的参考价值。研究在三维辐射传输模型LESS基础上发展了一个兼具一维模型简洁和三维模型精度优势的LESS1D模块(已随LESS模型正式发布,www.lessrt.org);探究随机均匀场景和三维异质场景中植被冠形、盖度等7种因素对6种植被指数与FPARgreen关系的影响。结果表明:①在均质性场景中,NDVI、SAVI、EVI对FPARgreen拟合相对最优,而在异质性场景中,则为NDVI和RVI。②在异质性场景中,不同冠形下FPARgreen与植被指数的拟合精度为圆柱形>椭球形>圆锥形;植被盖度较低时,植被指数对FPARgreen拟合精度较差;随着太阳天顶角增大,RVI与FPARgreen由线性关系变为指数关系。 结论 树冠体积和树冠几何结构是不同冠形影响FPARgreen大小的关键因素,而叶片聚集度、植被盖度和植被指数类型则是影响植被指数饱和效应的相关因素。

关键词: 三维辐射传输LESSFPARgreen植被指数异质场景    
Abstract:

The quantitative relationship between FPAR(Fraction of Absorbed Photosynthetically Active Radiation)and vegetation indices has certain reference value for improving FPAR inversion accuracy and guiding production practice. Based on the three-dimensional radiative transfer model LESS, a module named LESS1D (formally released with LESS though www.lessrt.org) with advantages of simplicity of 1D model and accuracy of 3D model is proposed. Based on this model, the influences of vegetation canopy, coverage and other factors on the relationship between FPARgreen and 6 vegetation indices were explored in random homogeneous scenes and 3D heterogeneous scenes. The results showed that in homogeneous scenarios, NDVI, SAVI and EVI fit FPARgreen best in homogeneous scenarios, while NDVI and RVI fit FPARgreen best in heterogeneous scenarios. In heterogeneous scenes, the fitting accuracy of FPARgreen and vegetation index under different crown shapes is cylindrical > ellipsoidal > conical; When the vegetation coverage is low, the fitting accuracy of vegetation indices to FPARgreen is poor; As the solar zenith angle increases, the relationship between RVI and FPARgreen changes from linear to exponential. Canopy volume and canopy geometry are the key factors affecting the size of FPARgreen with different crown shapes, while leaf aggregation, vegetation coverage and vegetation index type are the relevant factors affecting the saturation effect of vegetation index.

Key words: 3D radiative transfer    LESS    FPARgreen    Vegetation index    Heterogenous canopy
收稿日期: 2022-04-28 出版日期: 2023-04-12
ZTFLH:  Q945.11  
基金资助: 国家自然科学基金青年科学基金项目(42001279);国家自然科学基金重点项目(42130111)
通讯作者: 漆建波     E-mail: yeyuyang_bnu@163.com;jianboqi@bjfu.edu.cn
作者简介: 叶雨洋(2000-),女,福建三明人,硕士研究生,主要从事林业遥感应用、城市生态系统管理。E?mail: yeyuyang_bnu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
叶雨洋
漆建波
曹颖
蒋靖怡

引用本文:

叶雨洋,漆建波,曹颖,蒋靖怡. 基于LESS模型的异质植被冠层光合有效辐射吸收比与植被指数的关系研究[J]. 遥感技术与应用, 2023, 38(1): 51-65.

Yuyang YE,Jianbo QI,Ying CAO,Jingyi JIANG. Relationship between FPARgreen and Several Vegetation Indices in Heterogeneous Vegetation based on LESS Model. Remote Sensing Technology and Application, 2023, 38(1): 51-65.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.1.0051        http://www.rsta.ac.cn/CN/Y2023/V38/I1/51

图1  界面及场景类型
参数取值大小或范围单位
叶片大小0.01m2
叶倾角分布类型平面型、倾斜型和球面型
叶绿素含量(Cab)30、50、70μg·cm-2
叶片内部结构参数(N)1.5
叶片等效水厚度(Cw)0.015cm
叶片干物质含量(Cm)0.012g·cm-2
树高(H)7m
冠下树高(H13m
胸径0.2m
冠形圆柱形、椭球形、圆锥形
冠高H24m
东西冠幅2m
南北冠幅2m
场景LAI1.0~8.0(步长为1.0)
植被盖度0.1~0.9(步长为0.1)m
太阳天顶角SZA21.917、30、45、75°
太阳方位角SAA166.422°
天空光比例通过LESS中集成的6S模型计算得到
FPARgreen400~750(步长为10)nm
模拟波段
表1  LESS1D模块输入参数列表
图2  异质性森林场景中的单木结构模型
图3  土壤反射率及叶片反射率、叶片透过率
植被指数计算公式参考文献
NDVI(R850-R650)/( R850+R650)[24]
GREEN-NDVI(R750-R550)/( R750+R550)[25]
SAVI((R850-R650)/( R850+R650+0.5))(1+0.5)[26]
RVIR850/ R650[27]
EVI(R753-R708)/( R708+R681)[28]
MTCI2.5*(R850-R650)/( R850+6* R650-7* R450+1)[29]
表2  本研究使用的植被指数及其计算公式
图4  均质植被冠层下的FPARgreen与6种植被指数关系
图5  异质植被冠层下的FPARgreen与6种植被指数关系(植被盖度为0.6)
图6  植被指数NDVI和RVI在不同植被盖度下的饱和性
图7  植被盖度对植被指数拟合精度的影响
图8  叶绿素浓度对FPARgreen与植被指数关系的影响
图9  叶面积指数对FPARgreen的影响(** 表示差异显著(p<0.05),***表示差异极其显著(p<0.001),未标注即不显著)
图10  叶面积指数对FPARgreen与植被指数关系的影响
图11  叶倾角分布对FPARgreen.与植被指数关系的影响
图12  土壤反射率对FPARgreen与植被指数关系的影响
图13  太阳天顶角对FPARgreen与植被指数关系的影响
图14  不同植被盖度下的GREEN-NDVI饱和性
1 LIANG S, LI X, WANG J. Advanced remote sensing[M]. Cambridge,MA,US:2012:383-414.
2 LIU Z, SHAO Q, LIU J. The performances of MODIS-GPP and -ET products in China and their sensitivity to input data (FPAR/LAI)[J]. Remote Sensing, 2014,7:135–152.
3 Report of the Sixteenth Session of the WMO-IOC-UNEP-ICSU Steering Committee for GCOS[R].WMO/TD.WMO: Geneva, Switzer: Land, 2008.
4 BICHERON P, LEROY M.A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model[J]. Remote Sensing of Environment,1999,67(3):251-266.
5 CHEN Shuwei. Distribution simulation of photosynthetically active radiation and light interception ability analysis within loquat canopy [D]. Fuzhou: Fuzhou University, 2018.
5 陈舒炜.单株枇杷冠层光合有效辐射分布模拟与光截获能力分析[D].福州:福州大学,2018.
6 DONG Taifeng, MENG Jihua, WU Bingfang. Overview on methods of deriving fraction of absorbed photosynthetically active radiation (FPAR) using remote sensing[J]. Acta Ecologica Sinica, 2012,32(22):7190-7201.
6 董泰锋,蒙继华,吴炳方.基于遥感的光合有效辐射吸收比率(FPAR)估算方法综述[J].生态学报,2012,32(22):7190-7201.
7 WANG Baolin, WANG Jingjie, YANG Yong, et al. Algorithm improvements for two important parameters of FPAR and maximum solar energy utilization efficiency[J]. Acta Prataculturae Sinica, 2013,22(5):220-228.
7 王保林,王晶杰,杨勇,等.植被光合有效辐射吸收分量及最大光能利用率算法的改进[J].草业学报,2013,22(5):220-228.
8 FENSHOLT R, SANDHOLT I, RASMUSSEN M S. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements[J]. Remote Sensing of Environment,2004,91:490-507.
9 MYNENI R B, RAMAKRISHNA R N, RUNNING S W. Estimation of global leaf area index and absorbed par using radiative transfer models[J]. IEEE Transactions on Geoscience and Remote Sensing,1997,35(6):1380-1393.
10 WIEGAND C L, RICHARDSON A J, ESCOBAR D E,et al. Vegetation indices in crop assessments[J]. Remote Sensing of Environment,1991,35(2/3):105-119.
11 BRASWELL B H, SCHIMEL D S, PRIVETTE J L,et al.Extracting ecological and bio-physical information from AVHRR optical data: An integrated algorithm based on inverse modeling[J]. Journal of Geophysical Research: Atmospheres,1996,101(D18): 23335-23348.
12 ASNER G P, WESSMAN C A, ARCHER S. Scale dependence of absorption of photosynthetically active radiation in terrestrial ecosystems[J]. Ecological Application, 1998, 8(4):1003-1021.
13 CHEN J M. Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forests[J]. IEEE Transaction on Geoscience and Remote Sensing, 1996, 34(6): 1353-1368.
14 JENKINS J P, RICHARDSON A D, BRASWELL B H, et al. Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements[J].Agricultural and Forest Meteorology,2007,143(1/2):64-79.
15 DONG Heng, HE Fangjian, ZHANG Chengfang. Relationship between FPARgreen and several vegetation indices based on radiative transfer model[J]. Journal of Huazhong Agricultural University,2016,35(4):70-75.
15 董恒,何枋键,张城芳.基于辐射传输模型的FPARgreen与几种植被指数的关系研究[J].华中农业大学学报,2016,35(4):70-75.
16 XU Fubao. Research of FPAR estimation method based on medium-high spatial resolution remote sensing data[D]. Qingdao:Shandong University of Science and Technology,2019.
16 徐富宝.中—高空间分辨率遥感数据的FPAR估算方法研究[D].青岛:山东科技大学,2019.
17 ZHEN Zhijun. Vegetation reflection simulation and bio-optical property inversion based on three-dimensional radiative transfer model[D]. Changchun:Jilin University, 2021.
17 甄治钧.基于三维辐射传输模型的植被反射率模拟及其生物光学参数反演[D].长春:吉林大学,2021.
18 QI Jianbo, XIE Donghui, XU Yue, et al. Principles and applications of the 3D radiative transfer model LESS[J]. Remote Sensing Technology and Application,2019,34(5):914-924.
18 漆建波,谢东辉,许月,等.三维辐射传输模型LESS原理及其应用[J].遥感技术与应用,2019,34(5):914-924.
19 BIAN Zunjian, QI jianbo, WU Shengbiao, et al. A review on the development and application of three-dimensional computer simulation mode of optical remote sensing[J]. National Remote Sensing Bulletin,2021,25(2):559-576.
19 卞尊健,漆建波,吴胜标,等.光学遥感三维计算机模拟模型的研究进展与应用[J].遥感学报,2021,25(2):559-576.
20 LIANG Shunlin, BAI Rui, CHEN Xiaona, et al. Review of China’s land surface quantitative remote sensing development in 2019[J].National Remote Sensing Bulletin,2020,24(6):618-671.
20 梁顺林,白瑞,陈晓娜,等.2019年中国陆表定量遥感发展综述[J].遥感学报,2020,24(6):618-671.
21 ZHANG Hui, LI Pingheng, ZHOU Guomou, et al. Advances in the studies on topographic effects of vegetation indices[J]. Chinese Journal of Applied Ecology,2018,29(2):669-677.
21 张慧,李平衡,周国模,等.植被指数的地形效应研究进展[J].应用生态学报,2018,29(2):669-677.
22 PAN Xia, GAO Yong, WANG Ji, et al. Review on Vegetation Index using remote sensing evolution[J]. Northern Horticulture,2018(20):162-169.
22 潘霞,高永,汪季,等.植被指数遥感演化研究进展[J].北方园艺,2018(20):162-169.
23 TANG Zhongjie, WANG Laigang, GUO Yan, et al. FPAR estimation of cotton breeding material based on Unmanned Aerial Vehicle(UAV) multispectral images[J]. Journal of Henan Agricultural Sciences,2021,50(11):162-171.
23 唐中杰,王来刚,郭燕,等.基于无人机多光谱的棉花育种材料FPAR估测[J].河南农业科学,2021,50(11):162-171.
24 ROUSE J W, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[C]∥ Greenbelt, Maryland: Third ERTS Resources Technology Satellite-1 Symposium, 1974:309-351.
25 GITELSON A A, MERZLYAK M N. Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll[J]. Journal of Plant Physiology,1996, 148(3/4): 494-500.
26 HUETE A R. A Soil-Adjusted Vegetation Index(SAVI)[J]. Remote Sensing of Environment, 1988, 25:295-309.
27 JORDAN C F. Derivation of leaf area index from quality of light on the forest floor[J]. Ecology, 1969, 50:663-666.
28 LIU H Q, HUETE A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33:457-465.
29 DASH J, CURRAN P J. Evaluation of the MERIS terrestrial chlorophyll index (MTCI)[J]. Advances in Space Research, 2007,39(1):100-104.
30 QI Jianbo, XIE Donghui, JIANG Jingyi, et al. 3D radiative transfer modeling of structurally complex forest canopies through a lightweight boundary-based description of leaf clusters[J]. Remote Sensing of Environment,2022,283:113301. DOI:10.1016/j.rse. 2022.113301 .
doi: 10.1016/j.rse. 2022.113301
31 LIU Qinhuo, CAO Biao, ZENG Yelu, et al. Recent progresses on the remote sensing radiative transfer modeling over heterogeneous vegetation canopy[J]. National Remote Sensing Bulletin, 2016,20(5):933-945.
31 柳钦火,曹彪,曾也鲁,等.植被遥感辐射传输建模中的异质性研究进展[J].遥感学报,2016,20(5):933-945.
32 YAN Guangjian, HU Ronghai, LUO Jinghui, et al. Review of indirect methods for leaf area index measurement[J]. National Remote Sensing Bulletin, 2016,20(5):958-978.
32 阎广建,胡容海,罗京辉,等.叶面积指数间接测量方法[J].遥感学报,2016,20(5):958-978.
33 SUN Ying. Modeling and verification for light interception, utilization and tree structure optimization in apple orchards with dwarf stocks[D]. Tai'an:Shandong Agricultural University,2018.孙滢.矮砧苹果园光能截获利用和树体结构优化模型的建立及验证[D].泰安:山东农业大学,2018.
34 SEYEDNASROLLAH B, KUMAR M. Effects of tree morphometry on net snow cover radiation on forest floor for varying vegetation densities[J]. Journal of Geophysical Research: Atmospheres,2013,118(22):12508-12521.
35 DASH J, CURRAN P J. Evaluation of the MERIS Terrestrial Chlorophyll Index (MTCI)[J]. Advances in Space Research, 2007,39(1):100-104.
36 ZHANG Ya, GENG Jun, WANG Shaoteng. Influence of leaf angle distribution on discreate canopy reflectance[J]. Remote Sensing Information, 2021,36(4):92-99.
36 张亚,耿君,王少腾.叶倾角分布对离散冠层反射率的影响[J].遥感信息,2021,36(4):92-99.
37 DONG Taifeng, WU Bingfang, MENG Jihua, et al. Sensitivity analysis of retrieving fraction of absorbed photosynthetically active radiation (FPAR) using remote sensing data[J]. Acta Ecologica Sinica, 2016,36(1):1-7.
38 ZHENG Yudong, XU Yuncheng, YAN Haijun,et al. Analysis of influnecing factors in wheat/maize canopy RVI and NDVI acquisition using ground-based remote sensing system[J]. Spectroscopy and Spectral Analysis,2021,41(8):2578-2585.
38 郑裕东,徐云成,严海军,等.基于近地遥感系统的小麦玉米冠层RVI和NDVI获取影响因素分析[J].光谱学与光谱分析,2021,41(8):2578-2585.
[1] 晏红波,李浩,卢献健,王佳华. 基于LST-VI特征空间的喀斯特地区土壤水分时空变化研究[J]. 遥感技术与应用, 2022, 37(6): 1460-1471.
[2] 段旭辉,徐维新,梁好,张娟,代娜,肖强智,王淇玉. 三江源地区高寒冬季枯草遥感监测方法研究[J]. 遥感技术与应用, 2022, 37(6): 1472-1481.
[3] 袁艺溶,王继燕,杨嘉葳,熊俊楠. 基于植被指数的若尔盖高原湿地光合有效辐射吸收比例估算研究[J]. 遥感技术与应用, 2022, 37(5): 1267-1276.
[4] 郭擎,朱丽娅,李安,顾铃燕. 基于NDVI变化检测的滑坡遥感精细识别[J]. 遥感技术与应用, 2022, 37(1): 17-23.
[5] 李淑贞,徐大伟,范凯凯,陈金强,佟旭泽,辛晓平,王旭. 基于无人机与卫星遥感的草原地上生物量反演研究[J]. 遥感技术与应用, 2022, 37(1): 272-278.
[6] 白雪洁,王旭峰,柳晓惠,周旭强. 黑河流域湿地、农田、草地生态系统碳通量变化特征及驱动因子分析[J]. 遥感技术与应用, 2022, 37(1): 94-107.
[7] 马锦典,江洪. SEVI指数消除4种十米级空间分辨率卫星影像地形阴影影响的效果评价[J]. 遥感技术与应用, 2021, 36(5): 1100-1110.
[8] 吴川虎,陶于祥,罗小波. 基于Google Earth Engine的重庆市植被指数长时间序列S-G滤波方法的改进与实现[J]. 遥感技术与应用, 2021, 36(5): 1189-1198.
[9] 罗玲,毛德华,张柏,王宗明,杨桄. 芦苇湿地植被NPP估算方法探索与应用[J]. 遥感技术与应用, 2021, 36(4): 742-750.
[10] 朱曼,张立福,王楠,林昱坤,张琳姗,王飒,刘华亮. 基于Sentinel-2的UNVI植被指数及性能对比研究[J]. 遥感技术与应用, 2021, 36(4): 936-947.
[11] 屈炀,袁占良,赵文智,陈学泓,陈家阁. 基于多时序特征和卷积神经网络的农作物分类[J]. 遥感技术与应用, 2021, 36(2): 304-313.
[12] 帅艳民,杨健,吴昊,邵聪颖,徐辛超,刘明岳,刘涛,梁继. 基于无人机观测的水稻冠层样方多角度反射特点分析[J]. 遥感技术与应用, 2021, 36(2): 342-352.
[13] 刘莹,朱秀芳,徐昆,陈令仪,郭锐. 干旱对灌溉和雨养农田生态系统生产力的影响对比分析[J]. 遥感技术与应用, 2021, 36(2): 381-390.
[14] 孙奇,关琳琳,焦全军,刘新杰,戴华阳. 基于植被指数融合的冬小麦生物量反演研究[J]. 遥感技术与应用, 2021, 36(2): 391-399.
[15] 唐希颖,崔耀平,李楠,付一鸣,刘小燕,闰亚迪. 2000~2015年北京市土地利用强度及其辐射反馈评估[J]. 遥感技术与应用, 2020, 35(3): 587-595.