遥感技术与应用 2023, Vol. 38 Issue (1): 51-65 DOI: 10.11873/j.issn.1004-0323.2023.1.0051 |
定量遥感专栏 |
|
|
|
|
基于LESS模型的异质植被冠层光合有效辐射吸收比与植被指数的关系研究 |
叶雨洋1,2( ),漆建波2( ),曹颖2,蒋靖怡2 |
1.北京师范大学 环境学院,环境模拟与污染控制国家重点联合实验室,北京 100875 2.北京林业大学 省部共建森林培育与保护教育部重点实验室,北京 100083 |
|
Relationship between FPARgreen and Several Vegetation Indices in Heterogeneous Vegetation based on LESS Model |
Yuyang YE1,2( ),Jianbo QI2( ),Ying CAO2,Jingyi JIANG2 |
1.State Key Joint Laboratory of Environment Simulation and Pollution Control,School of Environment,Beijing Normal University,Beijing 100875,China 2.The Key Laboratory for Silviculture and Conservation of Ministry of Education,Beijing Forestry University,Beijing 100083,China |
引用本文:
叶雨洋,漆建波,曹颖,蒋靖怡. 基于LESS模型的异质植被冠层光合有效辐射吸收比与植被指数的关系研究[J]. 遥感技术与应用, 2023, 38(1): 51-65.
Yuyang YE,Jianbo QI,Ying CAO,Jingyi JIANG. Relationship between FPARgreen and Several Vegetation Indices in Heterogeneous Vegetation based on LESS Model. Remote Sensing Technology and Application, 2023, 38(1): 51-65.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.1.0051
或
http://www.rsta.ac.cn/CN/Y2023/V38/I1/51
|
1 |
LIANG S, LI X, WANG J. Advanced remote sensing[M]. Cambridge,MA,US:2012:383-414.
|
2 |
LIU Z, SHAO Q, LIU J. The performances of MODIS-GPP and -ET products in China and their sensitivity to input data (FPAR/LAI)[J]. Remote Sensing, 2014,7:135–152.
|
3 |
Report of the Sixteenth Session of the WMO-IOC-UNEP-ICSU Steering Committee for GCOS[R].WMO/TD.WMO: Geneva, Switzer: Land, 2008.
|
4 |
BICHERON P, LEROY M.A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model[J]. Remote Sensing of Environment,1999,67(3):251-266.
|
5 |
CHEN Shuwei. Distribution simulation of photosynthetically active radiation and light interception ability analysis within loquat canopy [D]. Fuzhou: Fuzhou University, 2018.
|
5 |
陈舒炜.单株枇杷冠层光合有效辐射分布模拟与光截获能力分析[D].福州:福州大学,2018.
|
6 |
DONG Taifeng, MENG Jihua, WU Bingfang. Overview on methods of deriving fraction of absorbed photosynthetically active radiation (FPAR) using remote sensing[J]. Acta Ecologica Sinica, 2012,32(22):7190-7201.
|
6 |
董泰锋,蒙继华,吴炳方.基于遥感的光合有效辐射吸收比率(FPAR)估算方法综述[J].生态学报,2012,32(22):7190-7201.
|
7 |
WANG Baolin, WANG Jingjie, YANG Yong, et al. Algorithm improvements for two important parameters of FPAR and maximum solar energy utilization efficiency[J]. Acta Prataculturae Sinica, 2013,22(5):220-228.
|
7 |
王保林,王晶杰,杨勇,等.植被光合有效辐射吸收分量及最大光能利用率算法的改进[J].草业学报,2013,22(5):220-228.
|
8 |
FENSHOLT R, SANDHOLT I, RASMUSSEN M S. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements[J]. Remote Sensing of Environment,2004,91:490-507.
|
9 |
MYNENI R B, RAMAKRISHNA R N, RUNNING S W. Estimation of global leaf area index and absorbed par using radiative transfer models[J]. IEEE Transactions on Geoscience and Remote Sensing,1997,35(6):1380-1393.
|
10 |
WIEGAND C L, RICHARDSON A J, ESCOBAR D E,et al. Vegetation indices in crop assessments[J]. Remote Sensing of Environment,1991,35(2/3):105-119.
|
11 |
BRASWELL B H, SCHIMEL D S, PRIVETTE J L,et al.Extracting ecological and bio-physical information from AVHRR optical data: An integrated algorithm based on inverse modeling[J]. Journal of Geophysical Research: Atmospheres,1996,101(D18): 23335-23348.
|
12 |
ASNER G P, WESSMAN C A, ARCHER S. Scale dependence of absorption of photosynthetically active radiation in terrestrial ecosystems[J]. Ecological Application, 1998, 8(4):1003-1021.
|
13 |
CHEN J M. Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forests[J]. IEEE Transaction on Geoscience and Remote Sensing, 1996, 34(6): 1353-1368.
|
14 |
JENKINS J P, RICHARDSON A D, BRASWELL B H, et al. Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements[J].Agricultural and Forest Meteorology,2007,143(1/2):64-79.
|
15 |
DONG Heng, HE Fangjian, ZHANG Chengfang. Relationship between FPARgreen and several vegetation indices based on radiative transfer model[J]. Journal of Huazhong Agricultural University,2016,35(4):70-75.
|
15 |
董恒,何枋键,张城芳.基于辐射传输模型的FPARgreen与几种植被指数的关系研究[J].华中农业大学学报,2016,35(4):70-75.
|
16 |
XU Fubao. Research of FPAR estimation method based on medium-high spatial resolution remote sensing data[D]. Qingdao:Shandong University of Science and Technology,2019.
|
16 |
徐富宝.中—高空间分辨率遥感数据的FPAR估算方法研究[D].青岛:山东科技大学,2019.
|
17 |
ZHEN Zhijun. Vegetation reflection simulation and bio-optical property inversion based on three-dimensional radiative transfer model[D]. Changchun:Jilin University, 2021.
|
17 |
甄治钧.基于三维辐射传输模型的植被反射率模拟及其生物光学参数反演[D].长春:吉林大学,2021.
|
18 |
QI Jianbo, XIE Donghui, XU Yue, et al. Principles and applications of the 3D radiative transfer model LESS[J]. Remote Sensing Technology and Application,2019,34(5):914-924.
|
18 |
漆建波,谢东辉,许月,等.三维辐射传输模型LESS原理及其应用[J].遥感技术与应用,2019,34(5):914-924.
|
19 |
BIAN Zunjian, QI jianbo, WU Shengbiao, et al. A review on the development and application of three-dimensional computer simulation mode of optical remote sensing[J]. National Remote Sensing Bulletin,2021,25(2):559-576.
|
19 |
卞尊健,漆建波,吴胜标,等.光学遥感三维计算机模拟模型的研究进展与应用[J].遥感学报,2021,25(2):559-576.
|
20 |
LIANG Shunlin, BAI Rui, CHEN Xiaona, et al. Review of China’s land surface quantitative remote sensing development in 2019[J].National Remote Sensing Bulletin,2020,24(6):618-671.
|
20 |
梁顺林,白瑞,陈晓娜,等.2019年中国陆表定量遥感发展综述[J].遥感学报,2020,24(6):618-671.
|
21 |
ZHANG Hui, LI Pingheng, ZHOU Guomou, et al. Advances in the studies on topographic effects of vegetation indices[J]. Chinese Journal of Applied Ecology,2018,29(2):669-677.
|
21 |
张慧,李平衡,周国模,等.植被指数的地形效应研究进展[J].应用生态学报,2018,29(2):669-677.
|
22 |
PAN Xia, GAO Yong, WANG Ji, et al. Review on Vegetation Index using remote sensing evolution[J]. Northern Horticulture,2018(20):162-169.
|
22 |
潘霞,高永,汪季,等.植被指数遥感演化研究进展[J].北方园艺,2018(20):162-169.
|
23 |
TANG Zhongjie, WANG Laigang, GUO Yan, et al. FPAR estimation of cotton breeding material based on Unmanned Aerial Vehicle(UAV) multispectral images[J]. Journal of Henan Agricultural Sciences,2021,50(11):162-171.
|
23 |
唐中杰,王来刚,郭燕,等.基于无人机多光谱的棉花育种材料FPAR估测[J].河南农业科学,2021,50(11):162-171.
|
24 |
ROUSE J W, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[C]∥ Greenbelt, Maryland: Third ERTS Resources Technology Satellite-1 Symposium, 1974:309-351.
|
25 |
GITELSON A A, MERZLYAK M N. Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll[J]. Journal of Plant Physiology,1996, 148(3/4): 494-500.
|
26 |
HUETE A R. A Soil-Adjusted Vegetation Index(SAVI)[J]. Remote Sensing of Environment, 1988, 25:295-309.
|
27 |
JORDAN C F. Derivation of leaf area index from quality of light on the forest floor[J]. Ecology, 1969, 50:663-666.
|
28 |
LIU H Q, HUETE A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33:457-465.
|
29 |
DASH J, CURRAN P J. Evaluation of the MERIS terrestrial chlorophyll index (MTCI)[J]. Advances in Space Research, 2007,39(1):100-104.
|
30 |
QI Jianbo, XIE Donghui, JIANG Jingyi, et al. 3D radiative transfer modeling of structurally complex forest canopies through a lightweight boundary-based description of leaf clusters[J]. Remote Sensing of Environment,2022,283:113301. DOI:10.1016/j.rse. 2022.113301 .
doi: 10.1016/j.rse. 2022.113301
|
31 |
LIU Qinhuo, CAO Biao, ZENG Yelu, et al. Recent progresses on the remote sensing radiative transfer modeling over heterogeneous vegetation canopy[J]. National Remote Sensing Bulletin, 2016,20(5):933-945.
|
31 |
柳钦火,曹彪,曾也鲁,等.植被遥感辐射传输建模中的异质性研究进展[J].遥感学报,2016,20(5):933-945.
|
32 |
YAN Guangjian, HU Ronghai, LUO Jinghui, et al. Review of indirect methods for leaf area index measurement[J]. National Remote Sensing Bulletin, 2016,20(5):958-978.
|
32 |
阎广建,胡容海,罗京辉,等.叶面积指数间接测量方法[J].遥感学报,2016,20(5):958-978.
|
33 |
SUN Ying. Modeling and verification for light interception, utilization and tree structure optimization in apple orchards with dwarf stocks[D]. Tai'an:Shandong Agricultural University,2018.孙滢.矮砧苹果园光能截获利用和树体结构优化模型的建立及验证[D].泰安:山东农业大学,2018.
|
34 |
SEYEDNASROLLAH B, KUMAR M. Effects of tree morphometry on net snow cover radiation on forest floor for varying vegetation densities[J]. Journal of Geophysical Research: Atmospheres,2013,118(22):12508-12521.
|
35 |
DASH J, CURRAN P J. Evaluation of the MERIS Terrestrial Chlorophyll Index (MTCI)[J]. Advances in Space Research, 2007,39(1):100-104.
|
36 |
ZHANG Ya, GENG Jun, WANG Shaoteng. Influence of leaf angle distribution on discreate canopy reflectance[J]. Remote Sensing Information, 2021,36(4):92-99.
|
36 |
张亚,耿君,王少腾.叶倾角分布对离散冠层反射率的影响[J].遥感信息,2021,36(4):92-99.
|
37 |
DONG Taifeng, WU Bingfang, MENG Jihua, et al. Sensitivity analysis of retrieving fraction of absorbed photosynthetically active radiation (FPAR) using remote sensing data[J]. Acta Ecologica Sinica, 2016,36(1):1-7.
|
38 |
ZHENG Yudong, XU Yuncheng, YAN Haijun,et al. Analysis of influnecing factors in wheat/maize canopy RVI and NDVI acquisition using ground-based remote sensing system[J]. Spectroscopy and Spectral Analysis,2021,41(8):2578-2585.
|
38 |
郑裕东,徐云成,严海军,等.基于近地遥感系统的小麦玉米冠层RVI和NDVI获取影响因素分析[J].光谱学与光谱分析,2021,41(8):2578-2585.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|