Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (1): 129-142    DOI: 10.11873/j.issn.1004-0323.2023.1.0129
云检测专栏     
基于机器学习的遥感影像云检测研究进展
邴芳飞1,2(),金永涛1,2,张文豪1,2(),徐娜3,余涛4,5,张丽丽4,5,裴莹莹1,2
1.北华航天工业学院 遥感信息工程学院,河北 廊坊 065000
2.河北省航天遥感信息处理与应用协同创新中心,河北 廊坊 065000
3.国家卫星气象中心 卫星气象研究所,北京 100081
4.中国科学院空天信息创新研究院 遥感卫星应用国家工程实验室,北京 100094
5.中科空间信息(廊坊)研究院,河北 廊坊 065001
Research Progress of Remote Sensing Image Cloud Detection based on Machine Learning
Fangfei BING1,2(),Yongtao JIN1,2,Wenhao ZHANG1,2(),Na XU3,Tao YU4,5,Lili ZHANG4,5,Yingying PEI1,2
1.School of Remote Sensing and Information Engineering,North China Institute of Aerospace Engineering,Langfang 065000,China
2.Heibei Spacer Remote Sensing Information Processing and Application of Collaborative Innovation Center,Langfang 065000,China
3.Institute of satellite meteorology,National Satellite Meteorological Center,Beijing 100081,China
4.National Engineering Laboratory for Satellite Remote Sensing Applications,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China
5.Zhongke Langfang Institute of Spatial Information Applications,Langfang 065001,China
 全文: PDF(856 KB)   HTML
摘要:

在对地观测领域中云检测是遥感定量化应用的重要环节,同时也是卫星气象应用的关键步骤。近年来,基于机器学习的遥感影像云检测逐渐成为该领域的研究热点,并且取得了一系列研究成果。系统阐述了近10 a来国内外基于机器学习的遥感影像云检测的研究进展,将算法模型分为传统的机器学习模型和深度学习模型两类,并对两类中的具体模型进行详细介绍,对比分析不同模型的优缺点及其适用情况。重点介绍了传统机器学习中的支持向量机(SVM)、随机森林等方法,深度学习中的神经网络模型,包括卷积神经网络(CNN)、改进的U-Net网络等模型。在此基础上,分析了基于机器学习的遥感影像云检测研究中存在的问题,讨论了未来潜在发展方向。

关键词: 机器学习深度学习云检测神经网络遥感影像    
Abstract:

In the field of earth observation, cloud detection is not only an important part in the quantitative application of remote sensing, but also a key step in the application of satellite meteorology. In recent years, remote sensing image cloud detection based on machine learning has gradually become a research hotspot in this field, and a series of research achievements have been obtained. Systematically describes the research progress of remote sensing image cloud detection based on machine learning at home and abroad in recent 10 years, dividing the algorithm models into traditional machine learning model and deep learning model. Moreover, the specific models of two categories are introduced in detail, and the advantages, disadvantages and applications of different models are compared and analyzed. This paper focuses on the Support Vector Machine (SVM), random forest and other methods in traditional machine learning, and the neural network models in deep learning, including Convolutional Neural Network (CNN), improved U-Net network and so on. On this basis, the existing problems in the research of remote sensing image cloud detection based on machine learning are analyzed, and the potential development direction in the future is discussed.

Key words: Machine learning    Deep learning    Cloud detection    Neural network    Remote sensing image
收稿日期: 2021-09-14 出版日期: 2023-04-12
ZTFLH:  P237  
基金资助: 国家重点研发计划项目(2019YFE0127300);高分辨率对地观测系统重大专项(30-Y30F06-9003-20/22);国家自然科学基金(41801255);河北省自然科学基金(D2020409003);河北省高等学校科学技术研究项目(ZD2021303);北华航天工业学院博士科研启动基金(BKY-2021-31);民用航天预研项目(D040102);国防基础科研项目(JCKY2020908B001);国防基础科研计划(JCKY2019407D004);北华航天工业学院硕士研究生创新资助项目(YKY-2021-28)
通讯作者: 张文豪     E-mail: 1610332423@qq.com;zhangwh@radi.ac.cn
作者简介: 邴芳飞(1995-),女,河北邢台人,硕士研究生,主要从事大气环境遥感研究。E?mail: 1610332423@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邴芳飞
金永涛
张文豪
徐娜
余涛
张丽丽
裴莹莹

引用本文:

邴芳飞,金永涛,张文豪,徐娜,余涛,张丽丽,裴莹莹. 基于机器学习的遥感影像云检测研究进展[J]. 遥感技术与应用, 2023, 38(1): 129-142.

Fangfei BING,Yongtao JIN,Wenhao ZHANG,Na XU,Tao YU,Lili ZHANG,Yingying PEI. Research Progress of Remote Sensing Image Cloud Detection based on Machine Learning. Remote Sensing Technology and Application, 2023, 38(1): 129-142.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.1.0129        http://www.rsta.ac.cn/CN/Y2023/V38/I1/129

图1  基于机器学习的云检测方法分类
方法分类常见方法优点局限参考文献
传统的机器学习云检测方法支持向量机、随机森林、其他传统机器学习(如Kmeans、逻辑回归、KNN等)避免了手动设置阈值,方法比较灵活,相对于阈值法精度有较大提升。特征构造需要人为干预,基于像素的分类,结果存在椒盐效应Li pengfei等[21],Pratik等[22],张波等[23],孙汝星等[24],Haruma ishida等[25],Paolo addesso等[26],Nafiseh ghasemian和Mehdi akhoondzadeh[30],Fu hualian等[15],Wei jing等[31],Xiang[35],费文龙等[36],Luo tengling[38],吴炜等[39],韩杰等[40],Min xia等[42]
深度学习云检测方法基于卷积神经网络(CNN)的云检测方法可进行高分辨率、大尺度、多通道的遥感图像云分割,像素分类结果精度高边缘分割不精确,云的形状识别不精确Michal segal-rozenhaimer等[12],Yu junchuan等[48],Xie fengying等[49],Shao zhenfeng等[50],Markku luotamo等[51],Shi mengyun等[52],陈洋等[53],徐启恒等[54]
基于U-Net的云检测方法精确识别云和阴影,精确捕捉边界模型迁移性需要改进Jacob h?xbroe jeppesen等[8],Guo yanan等[61-62],Jiao libin等[63,82],Zhang zhaoxiang等[64],张家强等[65-66],张永宏等[67],Marc wieland等[68],Gonzalo mateo-garcía等[69]
基于其他深度学习的云检测(如BP神经网络,深度学习与其他特征或技术相结合)检测精度高,云边界准确检测结果存在不确定性,训练时间长Chen yushi等[71], Sun lin等[72], 高军等[73], 刘云峰等[74]
表1  基于机器学习的遥感影像云检测方法的优点与局限
1 ZHANG Y, WILLIAM B, ROSSOW Andrew A, et al . Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data[J].Journal of Geophysical Research Atmospheres, 2004,109(D19):1-27. DOI:10.1029/2003JD004457 .
doi: 10.1029/2003JD004457
2 GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Surveying and Mapping,2018,47(6):693-704.
2 龚健雅,季顺平.摄影测量与深度学习[J].测绘学报,2018,47(6):693-704.
3 Remote sensing of atmospheric environment. Scientific research progress. Landsat satellite cloud recognition based on machine learning and super pixel segmentation technology [DB/OL]. https:∥mp.weixin.qq.com/s/Mfqxt0wD6CcIdC46f1ksDw 2021,12,14.大气环境遥感.科研进展|结合机器学习和超像素分割技术的Landsat卫星云识别[DB/OL].https:∥mp.weixin.qq.com/s/Mfqxt0wD6CcIdC46f1ksDw 2021,12,14.
4 HOU Shuwei, SUN Wenfang, ZHENG Xiaosong. Review of cloud detection methods in remote sensing images [J]. Space Electronic Technology,2014,11(3):68-76.
4 侯舒维,孙文方,郑小松.遥感图像云检测方法综述[J].空间电子技术,2014,11(3):68-76.
5 MOHAJERANI S, SAEEDI P. Cloud-Net: An End-To-End cloud detection algorithm for Landsat 8 imagery[C]∥ IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019.
6 DAN López-Puigdollers, GONZALO Mateo-García, Gómez-Chova LUIS. Benchmarking deep learning models for cloud detection in Landsat-8 and Sentinel-2 images[J]. Remote Sensing,2021,13(5):992. DOI:10.3390/rs13050992 .
doi: 10.3390/rs13050992
7 FOGA S, SCARAMUZZA P L, GUO S, et al. Cloud detection algorithm comparison and validation for operational Landsat data products[J]. Remote Sensing of Environment, 2017, 194:379-390. DOI:10.1016/j.rse.2017.03.026 .
doi: 10.1016/j.rse.2017.03.026
8 JEPPESEN J H, JACOBSEN R H, INCEOGLU F,et al. A cloud detection algorithm for satellite imagery based on deep learning[J]. Remote Sensing of Environment,2019,229:247-259. DOI:10.1016/j.rse.2019.03.039 .
doi: 10.1016/j.rse.2019.03.039
9 CHAI D, NEWSAM S, ZHANG H K, et al. Cloud and cloud shadow detection in Landsat imagery based on deep convolutional neural networks[J]. Remote Sensing of Environment,2019,225:307-316. DOI:10.1016/j.rse.2019.03.007 .
doi: 10.1016/j.rse.2019.03.007
10 HUGHES M, DANIEL H. Automated detection of cloud and cloud shadow in single-date landsat imagery using neural networks and spatial post-processing[J]. Remote Sensing,2014,6(6):4907-4926. DOI:10.3390/rs6064907 .
doi: 10.3390/rs6064907
11 LI Y, CHEN W, ZHANG Y, et al. Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning[J]. Remote Sensing of Environment, 2020,250:112045. DOI:10.1016/j.rse.2020.112045 .
doi: 10.1016/j.rse.2020.112045
12 MICHAL Segal-Rozenhaimer, ALAN Li, KAMALIKA Das,et al. Cloud detection algorithm for multi-modal satellite imagery using Convolutional Neural-Networks(CNN)[J]. Remote Sensing of Environment,2020,237:111446. DOI:10.1016/j.rse.2019.111446 .
doi: 10.1016/j.rse.2019.111446
13 DAGOBERT T, GIOI R G V, FRANCHIS C D, et al. Cloud detection by luminance and inter-band parallax analysis for pushbroom satellite imagers[J].Image Processing on Line, 2020, 10:167-190.
14 Hollstei ANDRÉ, SEGL K, GUANTER L, et al. Ready-to-use methods for the detection of clouds, cirrus, snow, shadow,water and clear sky pixels in Sentinel-2 MSI images[J]. Remote Sensing,2016,8(8):666.DOI:10.3390/rs8080666 .
doi: 10.3390/rs8080666
15 FU H, SHEN Y, LIU J, et al. Cloud detection for FY meteorology satellite based on ensemble thresholds and random forests approach[J]. Remote Sensing,2018,11(1). DOI:10.3390/rs11010044 .
doi: 10.3390/rs11010044
16 YANG J, GUO J, YUE H, et al. CDnet: CNN-based cloud detection for remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019:6195-6211.
17 MOUNTRAKIS G, IM J, OGOLE C. Support vector machines in remote sensing: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(3):247-259.
18 LIU Q, LIU G. Combining tasseled cap transformation with support vector machine to classify Landsat TM imagery data[C]∥Sixth International Conference on Natural Computation. IEEE, 2010.
19 LIU Q, GUO Y, LIU G, et al. Classification of Landsat-8 OLI image using support vector machine with Tasseled Cap Transformation[C]∥ 2014 10th International Conference on Natural Computation (ICNC). IEEE, 2014.
20 BAHARI N, AHMAD A, ABOOBAIDER B M. Application of support vector machine for classification of multispectral data[J].IOP Conference Series:Earth and Environmental Science,2014,20(1):012038. DOI:10.1088/1755-1315/20/1/012038 .
doi: 10.1088/1755-1315/20/1/012038
21 LI P, DONG L, XIAO H, et al. A cloud image detection method based on SVM vector machine[J]. Neurocomputing, 2015,169:34-42.
22 PRATIK P, JOSHI Randolph H, WYNNE V A, et al. Cloud detection algorithm using SVM with SWIR2 and tasseled cap applied to Landsat 8[J]. International Journal of Applied Earth Observations and Geoinformation,2019,82 :101898-101898.
23 ZHANG Bo, HU Yadong, HONG Jin. Hierarchical support vector machine remote sensing image cloud detection based on multi feature fusion[J]. Journal of Atmospheric and Environmental Optics, 2021,16(1): 58-66.
23 张波,胡亚东,洪津.基于多特征融合的层次支持向量机遥感图像云检测[J].大气与环境光学学报,2021,16(1):58-66.
24 SUN ruxing, FAN Rongshuang. Multi feature fusion image cloud detection based on support vector machine [J]. Surveying and Spatial Geographic Information, 2018,41(6): 153-156.
24 孙汝星,范荣双.基于支持向量机的多特征融合影像云检测[J].测绘与空间地理信息,2018,41(6):153-156.
25 HARUMA Ishida, YU Oishi, KEITARO Morita, et al. Development of a support vector machine based cloud detection method for MODIS with the adjustability to various conditions[J]. Remote Sensing of Environment,2017,205:390-407.DOI:10.1016/j.rse.2017.11.003 .
doi: 10.1016/j.rse.2017.11.003
26 ADDESSO P, CONTE R, LONGO M, et al. SVM-based cloud detection aided by contextual information[C]∥ Workshop on Advances in Radar & Remote Sensing. IEEE, 2012.
27 ZHAO Xiao. Research on cloud detection method of high resolution satellite remote sensing image[D]. Harbin:Harbin Institute of Technology,2013.
27 赵晓. 高分辨率卫星遥感图像云检测方法研究[D]. 哈尔滨:哈尔滨工业大学,2013.
28 CHEN Changchun. Research on cloud detection algorithm of Landsat multispectral image based on support vector machine [D]. Hefei:Anhui University, 2014.
28 陈长春. 基于支持向量机的Landsat多光谱影像云检测算法研究[D]. 合肥:安徽大学, 2014.
29 JIN Wei, YU Jianding, FU Randi, et al. Cloud detection of meteorological cloud images using density clustering support vector machine[J]. Optoelectronics Laser, 2010(7):1079-1082.
29 金炜, 俞建定, 符冉迪,等. 利用密度聚类支持向量机的气象云图云检测[J]. 光电子·激光, 2010(7):1079-1082.
30 GHASEMIAN N, AKHOON D, ZADEH M. Introducing two random forest based methods for cloud detection in remote sensing images[J]. Advances in Space Research, 2018, 62(2):288-303.
31 WEI J, HUANG W, LI Z, et al. Cloud detection for Landsat imagery by combining the random forest and superpixels extracted via energy-driven sampling segmentation approaches[J]. Remote Sensing of Environment,2020,248:112005. DOI:10.1016/j.rse.2020.112005 .
doi: 10.1016/j.rse.2020.112005
32 XU Fu, XU Aiwen. Cloud, snow and fog classification detection based on random forest remote sensing image[J]. Land and Resources Remote Sensing, 2021,33(1): 96-101.
32 许赟,许艾文.基于随机森林的遥感影像云雪雾分类检测[J].国土资源遥感,2021,33(1):96-101.
33 REN Pengzhou, YUE Cairong. Cloud and shadow mask construction of Hyperion image based on random forest algorithm [J]. Forestry Survey Planning, 2018,43(3): 10-15.
33 任鹏洲,岳彩荣.基于随机森林算法构建Hyperion影像云和云阴影掩模[J].林业调查规划,2018,43(3):10-15.
34 WANG Wei. Research on cloud detection and smoke detection algorithm based on Kmeans clustering and multi spectral threshold [D]. Hefei:University of Science and Technology of China, 2011.
34 王伟. Kmeans聚类与多波谱阈值相结合的云检测和烟检测算法研究[D]. 合肥:中国科学技术大学,2011.
35 XIANG P S. A cloud detection algorithm for MODIS images combining kmeans clustering and otsu method[J]. IOP Conference,2018,392(6).DOI:10.1088/1757-899X/392/6/062199 .
doi: 10.1088/1757-899X/392/6/062199
36 FEI Wenlong, LV Hong, WEI Zhihui. Application of Logistic regression model in cloud detection of satellite images[J]. Computer Engineering and Application,2012,48(4):18-21.
36 费文龙,吕红,韦志辉. Logistic回归模型在卫星云图云检测中的应用[J].计算机工程与应用,2012,48(4):18-21.
37 LUO tengling, ZHANG Weimin, YU Yi, et al. An Iasi cloud detection method based on machine learning [A]. China Meteorological Society. 35th annual meeting of China Meteorological Society. S21 Satellite Meteorological and ecological remote sensing [C]∥ China Meteorological Society: China Meteorological Society, 2018:5.
37 罗藤灵,张卫民,余意 等. 一种基于机器学习的IASI云检测方法[A]. 中国气象学会.第35届中国气象学会年会 S 21 卫星气象与生态遥感[C]∥ 中国气象学会:中国气象学会,2018:5.
38 LUO Tengling, ZHANG Weimin, YU Yi,et al. Cloud detection using infrared atmospheric sounding interferometer observations by Logistic regression[J]. International Journal of Remote Sensing,2019,40(17):6530-6541.DOI:10.1080/2150704x. 2018.1553318 .
doi: 10.1080/2150704x. 2018.1553318
39 WU Wei, LUO Jiancheng, SHEN Zhanfeng,et al. Cloud removal method of Landsat image based on classified linear regression[J]. Journal of Wuhan University (Information Science Edition), 2013,38(8): 983-987.
39 吴炜,骆剑承,沈占锋,等.分类线性回归的Landsat影像去云方法[J].武汉大学学报(信息科学版),2013,38(8):983-987.
40 HAN Jie, YANG leiku, LI Huifang, et al. Cloud detection algorithm of HJ-1B image based on dynamic threshold[J]. Land and Resources Remote Sensing,2012,4(2): 12-18.
40 韩杰,杨磊库,李慧芳 等.基于动态阈值的HJ-1B图像云检测算法研究[J].国土资源遥感,2012,4(2):12-18.
41 DING Yuye. Research on cloud detection method for MODIS data[D]. Harbin:Harbin Institute of technology, 2013.
41 丁玉叶. 面向MODIS数据的云检测方法研究[D]. 哈尔滨:哈尔滨工业大学,2013.
42 MIN X, LU W T, YANG J, et al. A hybrid method based on extreme learning machine and K-nearest neighbor for cloud classification of ground-based visible cloud image[J]. Neurocomputing,2015,160:238-249.
43 WU Daiqiang, HE Tao. Cloud recognition of GF-5 image based on landsat8 sample database[C]∥ Academic alliance of high resolution earth observation. Proceedings of the 7th Annual Conference of high resolution earth observation. Academic alliance of high resolution earth observation: Management Office of Gaofen major project, Chinese Academy of Sciences, 2020:440-450.
43 吴代强,何涛. 基于Landsat 8样本数据库的高分五号影像云识别[C]∥ 高分辨率对地观测学术联盟.第七届高分辨率对地观测学术年会论文集.高分辨率对地观测学术联盟:中国科学院高分重大专项管理办公室,2020:440-450.
44 TSAGKATAKIS G, AIDINI A, FOTIADOU K, et al. Survey of deep-learning approaches for remote sensing observation enhancement[J].Sensors,2019,19(18):3929.DOI:10.3390/s19183929 .
doi: 10.3390/s19183929
45 MA L, LIU Y, ZHANG X, et al. Deep learning in remote sensing applications: A meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2019,152:166-177. DOI:10.1016/j.isprsjprs.2019.04.015 .
doi: 10.1016/j.isprsjprs.2019.04.015
46 BLACKWELL W J. A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data[J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(11):2535-2546.
47 MAGGIORI E, TARABALKE Y, CHARPIAT G, et al. Convolutional neural networks for large-scale remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(2):645-657.
48 YU J, LI Y, ZHENG X, et al. An effective cloud detection method for Gaofen-5 images via deep learning[J]. Remote Sensing, 2020,12(13):2106. DOI:10.3390/rs12132106 .
doi: 10.3390/rs12132106
49 XIE F, SHI M, SHI Z, et al. Multilevel cloud detection in remote sensing images based on deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(8):3631-3640.
50 SHAO Z, PAN Y, DIAO C, et al. Cloud detection in remote sensing images based on multiscale features-convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing,2019(99):1-15.DOI:10.1109/TGRS. 2018. 2889677 .
doi: 10.1109/TGRS. 2018. 2889677
51 LUOTAMO M, METSMKI S, KLAMI A. Multi-scale cloud detection in remote sensing images using a dual convolutional neural network[J]. arXiv e-prints, 2020. DOI:10.1109/TGRS.2020.3015272
doi: 10.1109/TGRS.2020.3015272
52 SHI M, XIE F, YUE Z, et al. Cloud detection of remote sensing images by deep learning[C]∥ IGARSS 2016-2016 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2016.
53 CHEN Yang, FAN Rongshuang, WANG Jingxue,et al.Cloud detection method for ZY-3 satellite remote sensing image based on deep learning[J]. Acta Optica Sinica,2018,38(1):362-367.
53 陈洋,范荣双,王竞雪,等.基于深度学习的资源三号卫星遥感影像云检测方法[J].光学学报,2018,38(1):362-367.
54 XU Qiheng, HUANG Yingbing, CHEN Yang. Cloud detection method for domestic high resolution remote sensing image based on super pixel and convolutional neural network [J]. Surveying and Mapping Bulletin, 2019,4(1):50-55.
54 徐启恒,黄滢冰,陈洋.结合超像素和卷积神经网络的国产高分辨率遥感影像云检测方法[J].测绘通报,2019,4(1):50-55.
55 ZENG Xiaoshuang. Research on remote sensing image cloud recognition and segmentation technology based on deep learning[D]. Changsha:University of Defense Science and Technology, 2018.
55 曾晓双. 基于深度学习的遥感图像云识别与分割处理技术研究[D].长沙:国防科技大学,2018.
56 KANG Chaomeng. Cloud detection of domestic high resolution optical remote sensing image based on neural network[D]. Beijing:University of Chinese Academy of Sciences (Xi'an Institute of Optics and Precision Machinery, Chinese Academy of Sciences), 2018.
56 康超萌. 基于神经网络的国产高分光学遥感图像云检测[D].北京:中国科学院大学(中国科学院西安光学精密机械研究所),2018.
57 LIU Bo, DENG Juan, SONG Yang, et al. Cloud detection of high resolution remote sensing image based on convolutional neural network[J]. Geospatial Information, 2017,15(11): 12-15.
57 刘波,邓娟,宋杨 等.基于卷积神经网络的高分辨率遥感影像云检测[J].地理空间信息,2017,15(11):12-15.
58 QU Jianhua, YAN Junjie, XUE Juan,et al . Research on the cloud detection model of FY3D /MERSI and EOS /MODIS based on deep learning[J]. Journal of Meteorology and Environment,2019,35(3):87-93.
58 瞿建华,鄢俊洁,薛娟,等 .基于深度学习的 FY3D /MERSI 和 EOS /MODIS 云检测模型研究[J].气象与环境学报,2019,35(3):87-93.
59 LI X, CHEN H, QI X, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663-2674.
60 GUO M, LIU H, XU Y, et al. Building extraction based on U-Net with an attention block and multiple Losses[J]. Remote Sensing,2020,12(9):1400. DOI:10.3390/rs12091400 .
doi: 10.3390/rs12091400
61 GUO Y, CAO X, LIU B, et al. Cloud detection for satellite imagery using deep learning[J]. Journal of Physics:Conference Series,2020,1617(1):012089.DOI:10.1088/1742-6596/1617/1/012089 .
doi: 10.1088/1742-6596/1617/1/012089
62 GUO Y, CAO X, LIU B, et al. Cloud detection for satellite imagery using attention-based U-Net convolutional neural network[J].Symmetry,2020,12(6):1056.DOI:10.3390/sym12061056 .
doi: 10.3390/sym12061056
63 JIAO L, HUO L, HU C, et al. Refined UNet V2: End-to-End patch-wise network for noise-free cloud and shadow segmentation[J]. Remote Sensing, 2020, 12(21):3530. DOI:10.3390/rs12213530 .
doi: 10.3390/rs12213530
64 ZHANG Z, XU G, SONG J. CubeSat cloud detection based on JPEG2000 compression and deep learning[J]. Advances in Mechanical Engineering,2018,10(10):168781401880817. DOI:10.1177/1687814018808178 .
doi: 10.1177/1687814018808178
65 ZHANG Jiaqiang. Research on cloud detection method of remote sensing image based on deep learning[D]. Beijing:University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences), 2020.
65 张家强. 基于深度学习的遥感图像云检测方法研究[D]. 北京:中国科学院大学(中国科学院上海技术物理研究所),2020.
66 ZHANG Jiaqiang, LI Xiaoyan, LI Liyuan, et al. Cloud detection method of Landsat 8 remote sensing image based on depth residual full convolution network[J]. Progress in Laser and Optoelectronics, 2020,57 (10): 364-371.
66 张家强,李潇雁,李丽圆,等.基于深度残差全卷积网络的Landsat 8遥感影像云检测方法[J].激光与光电子学进展,2020,57(10):364-371.
67 ZHANG Yonghong, CAI Pengyan, TAO runzhe, et al. Remote sensing image cloud detection based on improved U-Net network[J]. Surveying and Mapping Bulletin, 2020,4(3): 17-20.
67 张永宏,蔡朋艳,陶润喆,等 基于改进U-Net网络的遥感图像云检测[J].测绘通报,2020,4(3):17-20.
68 WIELANG M, LI Y, MARTINIS S. Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network[J].Remote Sensing of Environment,2019,230: 111203.DOI:10.1016/j.rse.2019.05.022 .
doi: 10.1016/j.rse.2019.05.022
69 MATEO-GARCIA G, LAPARRA V, DAN L P,et al.Transferring deep learning models for cloud detection between Landsat-8 and Proba-V[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160(4):1-17.
70 LIU Guangjin, WANG Guanghui, BI Weihua,et al. Cloud detection algorithm of remote sensing image based on DenseNet and attention mechanism[J]. Remote Sensing for Natural Resources,2022,34(2):88-96.
70 刘广进,王光辉,毕卫华,等. 基于 DenseNet 与注意力机制的遥感影像云检测算法[J]. 自然资源遥感,2022,34(2):88-96.
71 CHEN Y, LIN Z, XING Z, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 7(6):2094-2107.
72 SUN L, YANG X, JIA S, et al. Satellite data cloud detection using deep learning supported by hyperspectral data[J]. International Journal of Remote Sensing, 2020,41(4):1349-1371.
73 GAO Jun, WANG Kai, TIAN Xiaoyu,et al.A BP-NN based cloud detection method for FY-4 remote sensing images[J]. Journal of Infrared and Millimeter Wave,2018,37(4):477-485.
73 高军,王恺,田晓宇,等. 基于 BP 神经网络的风云四号遥感图像云检测算法[J].红外与毫米波学报,2018,37(4):477-485.
74 LIU Yunfeng, YANG Zhen, HAN Xiao, et al. Analysis of cloud detection methods for domestic high-resolution satellite images [J]. Surveying and Mapping Bulletin, 2020 (11): 66-70.
74 刘云峰,杨珍,韩骁,等.国产高分辨率卫星影像云检测方法分析[J].测绘通报,2020(11):66-70.
75 LI Z, SHEN H, LI H,et al. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery[J]. Remote Sensing of Environment,2016,191:342-358.
76 LI Xusheng, LIU Yufeng, CHEN Donghua,et al. Support vector machine Gaogao No. 1 cloud detection combined with image features[J]. Land and Resources Remote Sensing,2020,32(3): 55-62.
76 栗旭升,刘玉锋,陈冬花,等.结合图像特征的支持向量机高分一号云检测[J].国土资源遥感,2020,32(3):55-62.
77 Johnston Travis, Young Steven R., Hughes David,et al. Optimizing convolutional neural networks for cloud detection[P]. HPC Environments,2017.
78 LI Z, SHEN H, CHENG Q, et al. Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150:197-212.
79 ZHANG Zhihua.The development and enlightenment of machine learning[J]. Chinese Society of Computer Communication,2016,12(11):55-60.
79 张志华. 机器学习的发展历程及启示[J]. 中国计算机学会通讯, 2016,12(11):55-60.
80 LIU C C, ZHANG Y C, CHEN P Y,et al.Clouds classification from Sentinel-2 imagery with deep residual learning and Semantic image segmentation[J].Remote Sensing,2019,11(2):119. DOI:10.3390/rs11020119 .
doi: 10.3390/rs11020119
81 AN Jie, MA Jinwen. Automatic cloud detection of remote sensing image based on full convolution network[J]. Signal Processing,2019,35(4):556-562.
81 安捷,马尽文.基于全卷积网络的遥感图像自动云检测[J].信号处理,2019,35(4):556-562.
82 JIAO L, HUO L, HU C, et al. Refined UNet: UNet-based refinement network for cloud and shadow precise segmentation[J]. Remote Sensing,2020,12(12):2001. DOI:10.3390/rs12122001 .
doi: 10.3390/rs12122001
[1] 赵会芹,于博,陈方,王雷. 基于高分辨率卫星遥感影像滑坡提取方法研究现状[J]. 遥感技术与应用, 2023, 38(1): 108-115.
[2] 范霄,孔金玲,钟炎伶,蒋镒竹,张静雅. 基于XGBoost算法的遥感图像云检测[J]. 遥感技术与应用, 2023, 38(1): 156-162.
[3] 张妮娜,张珂,李运平,李曦,刘涛. 中国南方典型湿润山区植被类型的无人机多光谱遥感机器学习分类研究[J]. 遥感技术与应用, 2023, 38(1): 163-172.
[4] 宋佳,徐慧窈,高少华,马晨燕,诸云强. 轻量化卷积神经网络遥感影像建筑物提取模型[J]. 遥感技术与应用, 2023, 38(1): 190-199.
[5] 刘志君,崔丽娟,李伟,窦志国,左雪燕,雷茵茹,潘旭,李晶,赵欣胜,翟夏杰. 基于高光谱的辽河口盐地碱蓬生态化学计量特征反演研究[J]. 遥感技术与应用, 2023, 38(1): 239-250.
[6] 朱博,钟方洁,赵军锁. 基于分形维数和角二阶矩辅助的卷积神经网络云雪识别研究[J]. 遥感技术与应用, 2022, 37(6): 1328-1338.
[7] 方西瑶,蒋玲梅,崔慧珍. 基于Sentinel-1雷达数据的青藏高原地区土壤水分反演研究[J]. 遥感技术与应用, 2022, 37(6): 1447-1459.
[8] 张宇卓,李志伟,沈焕锋,彭小元. 激光雷达数据辅助的FY-3D影像阈值自适应云检测方法[J]. 遥感技术与应用, 2022, 37(5): 1109-1118.
[9] 高帅,侯学会,汪云,王倩,陈悦,邢瑞,王晶. 基于机器学习和大数据平台的陆地生态系统碳收支遥感监测[J]. 遥感技术与应用, 2022, 37(5): 1190-1197.
[10] 何海清,李长城,陈敏,凌梦云,杨容浩,陈婷. 基于迁移学习的低空摄影测量滑坡方量估算方法[J]. 遥感技术与应用, 2022, 37(5): 1227-1236.
[11] 于枫世,隋毅,王常颖,初佳兰. 基于深度学习的高分辨率卫星遥感影像围填海检测识别[J]. 遥感技术与应用, 2022, 37(4): 789-799.
[12] 隋冰清,殷志祥,吴鹏海,吴艳兰. 面向云覆盖的遥感影像时空融合深度学习方法及其应用[J]. 遥感技术与应用, 2022, 37(4): 800-810.
[13] 吕开云,侯昭阳,龚循强,杨硕. 一种基于ASR和PAPCNN的NSCT域遥感影像融合方法[J]. 遥感技术与应用, 2022, 37(4): 829-838.
[14] 廖廓,彭中,姜亚珍,党皓飞. 基于深度神经网络联合AMSR2和MODIS数据估算全球蒸散发研究[J]. 遥感技术与应用, 2022, 37(4): 878-887.
[15] 方攀飞,王雷光,徐伟恒,欧光龙,代沁伶,李若楠. 云南香格里拉地区森林优势树种决策融合分类[J]. 遥感技术与应用, 2022, 37(3): 638-650.