1 |
ZHANG Y, WILLIAM B, ROSSOW Andrew A, et al . Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data[J].Journal of Geophysical Research Atmospheres, 2004,109(D19):1-27. DOI:10.1029/2003JD004457 .
doi: 10.1029/2003JD004457
|
2 |
GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Surveying and Mapping,2018,47(6):693-704.
|
2 |
龚健雅,季顺平.摄影测量与深度学习[J].测绘学报,2018,47(6):693-704.
|
3 |
Remote sensing of atmospheric environment. Scientific research progress. Landsat satellite cloud recognition based on machine learning and super pixel segmentation technology [DB/OL]. https:∥mp.weixin.qq.com/s/Mfqxt0wD6CcIdC46f1ksDw 2021,12,14.大气环境遥感.科研进展|结合机器学习和超像素分割技术的Landsat卫星云识别[DB/OL].https:∥mp.weixin.qq.com/s/Mfqxt0wD6CcIdC46f1ksDw 2021,12,14.
|
4 |
HOU Shuwei, SUN Wenfang, ZHENG Xiaosong. Review of cloud detection methods in remote sensing images [J]. Space Electronic Technology,2014,11(3):68-76.
|
4 |
侯舒维,孙文方,郑小松.遥感图像云检测方法综述[J].空间电子技术,2014,11(3):68-76.
|
5 |
MOHAJERANI S, SAEEDI P. Cloud-Net: An End-To-End cloud detection algorithm for Landsat 8 imagery[C]∥ IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019.
|
6 |
DAN López-Puigdollers, GONZALO Mateo-García, Gómez-Chova LUIS. Benchmarking deep learning models for cloud detection in Landsat-8 and Sentinel-2 images[J]. Remote Sensing,2021,13(5):992. DOI:10.3390/rs13050992 .
doi: 10.3390/rs13050992
|
7 |
FOGA S, SCARAMUZZA P L, GUO S, et al. Cloud detection algorithm comparison and validation for operational Landsat data products[J]. Remote Sensing of Environment, 2017, 194:379-390. DOI:10.1016/j.rse.2017.03.026 .
doi: 10.1016/j.rse.2017.03.026
|
8 |
JEPPESEN J H, JACOBSEN R H, INCEOGLU F,et al. A cloud detection algorithm for satellite imagery based on deep learning[J]. Remote Sensing of Environment,2019,229:247-259. DOI:10.1016/j.rse.2019.03.039 .
doi: 10.1016/j.rse.2019.03.039
|
9 |
CHAI D, NEWSAM S, ZHANG H K, et al. Cloud and cloud shadow detection in Landsat imagery based on deep convolutional neural networks[J]. Remote Sensing of Environment,2019,225:307-316. DOI:10.1016/j.rse.2019.03.007 .
doi: 10.1016/j.rse.2019.03.007
|
10 |
HUGHES M, DANIEL H. Automated detection of cloud and cloud shadow in single-date landsat imagery using neural networks and spatial post-processing[J]. Remote Sensing,2014,6(6):4907-4926. DOI:10.3390/rs6064907 .
doi: 10.3390/rs6064907
|
11 |
LI Y, CHEN W, ZHANG Y, et al. Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning[J]. Remote Sensing of Environment, 2020,250:112045. DOI:10.1016/j.rse.2020.112045 .
doi: 10.1016/j.rse.2020.112045
|
12 |
MICHAL Segal-Rozenhaimer, ALAN Li, KAMALIKA Das,et al. Cloud detection algorithm for multi-modal satellite imagery using Convolutional Neural-Networks(CNN)[J]. Remote Sensing of Environment,2020,237:111446. DOI:10.1016/j.rse.2019.111446 .
doi: 10.1016/j.rse.2019.111446
|
13 |
DAGOBERT T, GIOI R G V, FRANCHIS C D, et al. Cloud detection by luminance and inter-band parallax analysis for pushbroom satellite imagers[J].Image Processing on Line, 2020, 10:167-190.
|
14 |
Hollstei ANDRÉ, SEGL K, GUANTER L, et al. Ready-to-use methods for the detection of clouds, cirrus, snow, shadow,water and clear sky pixels in Sentinel-2 MSI images[J]. Remote Sensing,2016,8(8):666.DOI:10.3390/rs8080666 .
doi: 10.3390/rs8080666
|
15 |
FU H, SHEN Y, LIU J, et al. Cloud detection for FY meteorology satellite based on ensemble thresholds and random forests approach[J]. Remote Sensing,2018,11(1). DOI:10.3390/rs11010044 .
doi: 10.3390/rs11010044
|
16 |
YANG J, GUO J, YUE H, et al. CDnet: CNN-based cloud detection for remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019:6195-6211.
|
17 |
MOUNTRAKIS G, IM J, OGOLE C. Support vector machines in remote sensing: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(3):247-259.
|
18 |
LIU Q, LIU G. Combining tasseled cap transformation with support vector machine to classify Landsat TM imagery data[C]∥Sixth International Conference on Natural Computation. IEEE, 2010.
|
19 |
LIU Q, GUO Y, LIU G, et al. Classification of Landsat-8 OLI image using support vector machine with Tasseled Cap Transformation[C]∥ 2014 10th International Conference on Natural Computation (ICNC). IEEE, 2014.
|
20 |
BAHARI N, AHMAD A, ABOOBAIDER B M. Application of support vector machine for classification of multispectral data[J].IOP Conference Series:Earth and Environmental Science,2014,20(1):012038. DOI:10.1088/1755-1315/20/1/012038 .
doi: 10.1088/1755-1315/20/1/012038
|
21 |
LI P, DONG L, XIAO H, et al. A cloud image detection method based on SVM vector machine[J]. Neurocomputing, 2015,169:34-42.
|
22 |
PRATIK P, JOSHI Randolph H, WYNNE V A, et al. Cloud detection algorithm using SVM with SWIR2 and tasseled cap applied to Landsat 8[J]. International Journal of Applied Earth Observations and Geoinformation,2019,82 :101898-101898.
|
23 |
ZHANG Bo, HU Yadong, HONG Jin. Hierarchical support vector machine remote sensing image cloud detection based on multi feature fusion[J]. Journal of Atmospheric and Environmental Optics, 2021,16(1): 58-66.
|
23 |
张波,胡亚东,洪津.基于多特征融合的层次支持向量机遥感图像云检测[J].大气与环境光学学报,2021,16(1):58-66.
|
24 |
SUN ruxing, FAN Rongshuang. Multi feature fusion image cloud detection based on support vector machine [J]. Surveying and Spatial Geographic Information, 2018,41(6): 153-156.
|
24 |
孙汝星,范荣双.基于支持向量机的多特征融合影像云检测[J].测绘与空间地理信息,2018,41(6):153-156.
|
25 |
HARUMA Ishida, YU Oishi, KEITARO Morita, et al. Development of a support vector machine based cloud detection method for MODIS with the adjustability to various conditions[J]. Remote Sensing of Environment,2017,205:390-407.DOI:10.1016/j.rse.2017.11.003 .
doi: 10.1016/j.rse.2017.11.003
|
26 |
ADDESSO P, CONTE R, LONGO M, et al. SVM-based cloud detection aided by contextual information[C]∥ Workshop on Advances in Radar & Remote Sensing. IEEE, 2012.
|
27 |
ZHAO Xiao. Research on cloud detection method of high resolution satellite remote sensing image[D]. Harbin:Harbin Institute of Technology,2013.
|
27 |
赵晓. 高分辨率卫星遥感图像云检测方法研究[D]. 哈尔滨:哈尔滨工业大学,2013.
|
28 |
CHEN Changchun. Research on cloud detection algorithm of Landsat multispectral image based on support vector machine [D]. Hefei:Anhui University, 2014.
|
28 |
陈长春. 基于支持向量机的Landsat多光谱影像云检测算法研究[D]. 合肥:安徽大学, 2014.
|
29 |
JIN Wei, YU Jianding, FU Randi, et al. Cloud detection of meteorological cloud images using density clustering support vector machine[J]. Optoelectronics Laser, 2010(7):1079-1082.
|
29 |
金炜, 俞建定, 符冉迪,等. 利用密度聚类支持向量机的气象云图云检测[J]. 光电子·激光, 2010(7):1079-1082.
|
30 |
GHASEMIAN N, AKHOON D, ZADEH M. Introducing two random forest based methods for cloud detection in remote sensing images[J]. Advances in Space Research, 2018, 62(2):288-303.
|
31 |
WEI J, HUANG W, LI Z, et al. Cloud detection for Landsat imagery by combining the random forest and superpixels extracted via energy-driven sampling segmentation approaches[J]. Remote Sensing of Environment,2020,248:112005. DOI:10.1016/j.rse.2020.112005 .
doi: 10.1016/j.rse.2020.112005
|
32 |
XU Fu, XU Aiwen. Cloud, snow and fog classification detection based on random forest remote sensing image[J]. Land and Resources Remote Sensing, 2021,33(1): 96-101.
|
32 |
许赟,许艾文.基于随机森林的遥感影像云雪雾分类检测[J].国土资源遥感,2021,33(1):96-101.
|
33 |
REN Pengzhou, YUE Cairong. Cloud and shadow mask construction of Hyperion image based on random forest algorithm [J]. Forestry Survey Planning, 2018,43(3): 10-15.
|
33 |
任鹏洲,岳彩荣.基于随机森林算法构建Hyperion影像云和云阴影掩模[J].林业调查规划,2018,43(3):10-15.
|
34 |
WANG Wei. Research on cloud detection and smoke detection algorithm based on Kmeans clustering and multi spectral threshold [D]. Hefei:University of Science and Technology of China, 2011.
|
34 |
王伟. Kmeans聚类与多波谱阈值相结合的云检测和烟检测算法研究[D]. 合肥:中国科学技术大学,2011.
|
35 |
XIANG P S. A cloud detection algorithm for MODIS images combining kmeans clustering and otsu method[J]. IOP Conference,2018,392(6).DOI:10.1088/1757-899X/392/6/062199 .
doi: 10.1088/1757-899X/392/6/062199
|
36 |
FEI Wenlong, LV Hong, WEI Zhihui. Application of Logistic regression model in cloud detection of satellite images[J]. Computer Engineering and Application,2012,48(4):18-21.
|
36 |
费文龙,吕红,韦志辉. Logistic回归模型在卫星云图云检测中的应用[J].计算机工程与应用,2012,48(4):18-21.
|
37 |
LUO tengling, ZHANG Weimin, YU Yi, et al. An Iasi cloud detection method based on machine learning [A]. China Meteorological Society. 35th annual meeting of China Meteorological Society. S21 Satellite Meteorological and ecological remote sensing [C]∥ China Meteorological Society: China Meteorological Society, 2018:5.
|
37 |
罗藤灵,张卫民,余意 等. 一种基于机器学习的IASI云检测方法[A]. 中国气象学会.第35届中国气象学会年会 S 21 卫星气象与生态遥感[C]∥ 中国气象学会:中国气象学会,2018:5.
|
38 |
LUO Tengling, ZHANG Weimin, YU Yi,et al. Cloud detection using infrared atmospheric sounding interferometer observations by Logistic regression[J]. International Journal of Remote Sensing,2019,40(17):6530-6541.DOI:10.1080/2150704x. 2018.1553318 .
doi: 10.1080/2150704x. 2018.1553318
|
39 |
WU Wei, LUO Jiancheng, SHEN Zhanfeng,et al. Cloud removal method of Landsat image based on classified linear regression[J]. Journal of Wuhan University (Information Science Edition), 2013,38(8): 983-987.
|
39 |
吴炜,骆剑承,沈占锋,等.分类线性回归的Landsat影像去云方法[J].武汉大学学报(信息科学版),2013,38(8):983-987.
|
40 |
HAN Jie, YANG leiku, LI Huifang, et al. Cloud detection algorithm of HJ-1B image based on dynamic threshold[J]. Land and Resources Remote Sensing,2012,4(2): 12-18.
|
40 |
韩杰,杨磊库,李慧芳 等.基于动态阈值的HJ-1B图像云检测算法研究[J].国土资源遥感,2012,4(2):12-18.
|
41 |
DING Yuye. Research on cloud detection method for MODIS data[D]. Harbin:Harbin Institute of technology, 2013.
|
41 |
丁玉叶. 面向MODIS数据的云检测方法研究[D]. 哈尔滨:哈尔滨工业大学,2013.
|
42 |
MIN X, LU W T, YANG J, et al. A hybrid method based on extreme learning machine and K-nearest neighbor for cloud classification of ground-based visible cloud image[J]. Neurocomputing,2015,160:238-249.
|
43 |
WU Daiqiang, HE Tao. Cloud recognition of GF-5 image based on landsat8 sample database[C]∥ Academic alliance of high resolution earth observation. Proceedings of the 7th Annual Conference of high resolution earth observation. Academic alliance of high resolution earth observation: Management Office of Gaofen major project, Chinese Academy of Sciences, 2020:440-450.
|
43 |
吴代强,何涛. 基于Landsat 8样本数据库的高分五号影像云识别[C]∥ 高分辨率对地观测学术联盟.第七届高分辨率对地观测学术年会论文集.高分辨率对地观测学术联盟:中国科学院高分重大专项管理办公室,2020:440-450.
|
44 |
TSAGKATAKIS G, AIDINI A, FOTIADOU K, et al. Survey of deep-learning approaches for remote sensing observation enhancement[J].Sensors,2019,19(18):3929.DOI:10.3390/s19183929 .
doi: 10.3390/s19183929
|
45 |
MA L, LIU Y, ZHANG X, et al. Deep learning in remote sensing applications: A meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2019,152:166-177. DOI:10.1016/j.isprsjprs.2019.04.015 .
doi: 10.1016/j.isprsjprs.2019.04.015
|
46 |
BLACKWELL W J. A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data[J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(11):2535-2546.
|
47 |
MAGGIORI E, TARABALKE Y, CHARPIAT G, et al. Convolutional neural networks for large-scale remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(2):645-657.
|
48 |
YU J, LI Y, ZHENG X, et al. An effective cloud detection method for Gaofen-5 images via deep learning[J]. Remote Sensing, 2020,12(13):2106. DOI:10.3390/rs12132106 .
doi: 10.3390/rs12132106
|
49 |
XIE F, SHI M, SHI Z, et al. Multilevel cloud detection in remote sensing images based on deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(8):3631-3640.
|
50 |
SHAO Z, PAN Y, DIAO C, et al. Cloud detection in remote sensing images based on multiscale features-convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing,2019(99):1-15.DOI:10.1109/TGRS. 2018. 2889677 .
doi: 10.1109/TGRS. 2018. 2889677
|
51 |
LUOTAMO M, METSMKI S, KLAMI A. Multi-scale cloud detection in remote sensing images using a dual convolutional neural network[J]. arXiv e-prints, 2020. DOI:10.1109/TGRS.2020.3015272
doi: 10.1109/TGRS.2020.3015272
|
52 |
SHI M, XIE F, YUE Z, et al. Cloud detection of remote sensing images by deep learning[C]∥ IGARSS 2016-2016 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2016.
|
53 |
CHEN Yang, FAN Rongshuang, WANG Jingxue,et al.Cloud detection method for ZY-3 satellite remote sensing image based on deep learning[J]. Acta Optica Sinica,2018,38(1):362-367.
|
53 |
陈洋,范荣双,王竞雪,等.基于深度学习的资源三号卫星遥感影像云检测方法[J].光学学报,2018,38(1):362-367.
|
54 |
XU Qiheng, HUANG Yingbing, CHEN Yang. Cloud detection method for domestic high resolution remote sensing image based on super pixel and convolutional neural network [J]. Surveying and Mapping Bulletin, 2019,4(1):50-55.
|
54 |
徐启恒,黄滢冰,陈洋.结合超像素和卷积神经网络的国产高分辨率遥感影像云检测方法[J].测绘通报,2019,4(1):50-55.
|
55 |
ZENG Xiaoshuang. Research on remote sensing image cloud recognition and segmentation technology based on deep learning[D]. Changsha:University of Defense Science and Technology, 2018.
|
55 |
曾晓双. 基于深度学习的遥感图像云识别与分割处理技术研究[D].长沙:国防科技大学,2018.
|
56 |
KANG Chaomeng. Cloud detection of domestic high resolution optical remote sensing image based on neural network[D]. Beijing:University of Chinese Academy of Sciences (Xi'an Institute of Optics and Precision Machinery, Chinese Academy of Sciences), 2018.
|
56 |
康超萌. 基于神经网络的国产高分光学遥感图像云检测[D].北京:中国科学院大学(中国科学院西安光学精密机械研究所),2018.
|
57 |
LIU Bo, DENG Juan, SONG Yang, et al. Cloud detection of high resolution remote sensing image based on convolutional neural network[J]. Geospatial Information, 2017,15(11): 12-15.
|
57 |
刘波,邓娟,宋杨 等.基于卷积神经网络的高分辨率遥感影像云检测[J].地理空间信息,2017,15(11):12-15.
|
58 |
QU Jianhua, YAN Junjie, XUE Juan,et al . Research on the cloud detection model of FY3D /MERSI and EOS /MODIS based on deep learning[J]. Journal of Meteorology and Environment,2019,35(3):87-93.
|
58 |
瞿建华,鄢俊洁,薛娟,等 .基于深度学习的 FY3D /MERSI 和 EOS /MODIS 云检测模型研究[J].气象与环境学报,2019,35(3):87-93.
|
59 |
LI X, CHEN H, QI X, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663-2674.
|
60 |
GUO M, LIU H, XU Y, et al. Building extraction based on U-Net with an attention block and multiple Losses[J]. Remote Sensing,2020,12(9):1400. DOI:10.3390/rs12091400 .
doi: 10.3390/rs12091400
|
61 |
GUO Y, CAO X, LIU B, et al. Cloud detection for satellite imagery using deep learning[J]. Journal of Physics:Conference Series,2020,1617(1):012089.DOI:10.1088/1742-6596/1617/1/012089 .
doi: 10.1088/1742-6596/1617/1/012089
|
62 |
GUO Y, CAO X, LIU B, et al. Cloud detection for satellite imagery using attention-based U-Net convolutional neural network[J].Symmetry,2020,12(6):1056.DOI:10.3390/sym12061056 .
doi: 10.3390/sym12061056
|
63 |
JIAO L, HUO L, HU C, et al. Refined UNet V2: End-to-End patch-wise network for noise-free cloud and shadow segmentation[J]. Remote Sensing, 2020, 12(21):3530. DOI:10.3390/rs12213530 .
doi: 10.3390/rs12213530
|
64 |
ZHANG Z, XU G, SONG J. CubeSat cloud detection based on JPEG2000 compression and deep learning[J]. Advances in Mechanical Engineering,2018,10(10):168781401880817. DOI:10.1177/1687814018808178 .
doi: 10.1177/1687814018808178
|
65 |
ZHANG Jiaqiang. Research on cloud detection method of remote sensing image based on deep learning[D]. Beijing:University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences), 2020.
|
65 |
张家强. 基于深度学习的遥感图像云检测方法研究[D]. 北京:中国科学院大学(中国科学院上海技术物理研究所),2020.
|
66 |
ZHANG Jiaqiang, LI Xiaoyan, LI Liyuan, et al. Cloud detection method of Landsat 8 remote sensing image based on depth residual full convolution network[J]. Progress in Laser and Optoelectronics, 2020,57 (10): 364-371.
|
66 |
张家强,李潇雁,李丽圆,等.基于深度残差全卷积网络的Landsat 8遥感影像云检测方法[J].激光与光电子学进展,2020,57(10):364-371.
|
67 |
ZHANG Yonghong, CAI Pengyan, TAO runzhe, et al. Remote sensing image cloud detection based on improved U-Net network[J]. Surveying and Mapping Bulletin, 2020,4(3): 17-20.
|
67 |
张永宏,蔡朋艳,陶润喆,等 基于改进U-Net网络的遥感图像云检测[J].测绘通报,2020,4(3):17-20.
|
68 |
WIELANG M, LI Y, MARTINIS S. Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network[J].Remote Sensing of Environment,2019,230: 111203.DOI:10.1016/j.rse.2019.05.022 .
doi: 10.1016/j.rse.2019.05.022
|
69 |
MATEO-GARCIA G, LAPARRA V, DAN L P,et al.Transferring deep learning models for cloud detection between Landsat-8 and Proba-V[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160(4):1-17.
|
70 |
LIU Guangjin, WANG Guanghui, BI Weihua,et al. Cloud detection algorithm of remote sensing image based on DenseNet and attention mechanism[J]. Remote Sensing for Natural Resources,2022,34(2):88-96.
|
70 |
刘广进,王光辉,毕卫华,等. 基于 DenseNet 与注意力机制的遥感影像云检测算法[J]. 自然资源遥感,2022,34(2):88-96.
|
71 |
CHEN Y, LIN Z, XING Z, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 7(6):2094-2107.
|
72 |
SUN L, YANG X, JIA S, et al. Satellite data cloud detection using deep learning supported by hyperspectral data[J]. International Journal of Remote Sensing, 2020,41(4):1349-1371.
|
73 |
GAO Jun, WANG Kai, TIAN Xiaoyu,et al.A BP-NN based cloud detection method for FY-4 remote sensing images[J]. Journal of Infrared and Millimeter Wave,2018,37(4):477-485.
|
73 |
高军,王恺,田晓宇,等. 基于 BP 神经网络的风云四号遥感图像云检测算法[J].红外与毫米波学报,2018,37(4):477-485.
|
74 |
LIU Yunfeng, YANG Zhen, HAN Xiao, et al. Analysis of cloud detection methods for domestic high-resolution satellite images [J]. Surveying and Mapping Bulletin, 2020 (11): 66-70.
|
74 |
刘云峰,杨珍,韩骁,等.国产高分辨率卫星影像云检测方法分析[J].测绘通报,2020(11):66-70.
|
75 |
LI Z, SHEN H, LI H,et al. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery[J]. Remote Sensing of Environment,2016,191:342-358.
|
76 |
LI Xusheng, LIU Yufeng, CHEN Donghua,et al. Support vector machine Gaogao No. 1 cloud detection combined with image features[J]. Land and Resources Remote Sensing,2020,32(3): 55-62.
|
76 |
栗旭升,刘玉锋,陈冬花,等.结合图像特征的支持向量机高分一号云检测[J].国土资源遥感,2020,32(3):55-62.
|
77 |
Johnston Travis, Young Steven R., Hughes David,et al. Optimizing convolutional neural networks for cloud detection[P]. HPC Environments,2017.
|
78 |
LI Z, SHEN H, CHENG Q, et al. Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150:197-212.
|
79 |
ZHANG Zhihua.The development and enlightenment of machine learning[J]. Chinese Society of Computer Communication,2016,12(11):55-60.
|
79 |
张志华. 机器学习的发展历程及启示[J]. 中国计算机学会通讯, 2016,12(11):55-60.
|
80 |
LIU C C, ZHANG Y C, CHEN P Y,et al.Clouds classification from Sentinel-2 imagery with deep residual learning and Semantic image segmentation[J].Remote Sensing,2019,11(2):119. DOI:10.3390/rs11020119 .
doi: 10.3390/rs11020119
|
81 |
AN Jie, MA Jinwen. Automatic cloud detection of remote sensing image based on full convolution network[J]. Signal Processing,2019,35(4):556-562.
|
81 |
安捷,马尽文.基于全卷积网络的遥感图像自动云检测[J].信号处理,2019,35(4):556-562.
|
82 |
JIAO L, HUO L, HU C, et al. Refined UNet: UNet-based refinement network for cloud and shadow precise segmentation[J]. Remote Sensing,2020,12(12):2001. DOI:10.3390/rs12122001 .
doi: 10.3390/rs12122001
|