遥感技术与应用 2023, Vol. 38 Issue (1): 163-172 DOI: 10.11873/j.issn.1004-0323.2023.1.0163 |
数据与图像处理 |
|
|
|
|
中国南方典型湿润山区植被类型的无人机多光谱遥感机器学习分类研究 |
张妮娜1,2( ),张珂1,2,3,4,5( ),李运平1,2,李曦1,2,刘涛2,1 |
1.河海大学 水文水资源与水利工程科学国家重点实验室,江苏 南京 210098 2.河海大学 水文水资源学院,江苏 南京 210098 3.长江保护与绿色发展研究院,江苏 南京 210098 4.中国气象局-河海大学水文气象研究联合实验室,江苏 南京 210098 5.水利部水利大数据重点实验室,江苏 南京 210098 |
|
Study on Machine Learning Methods for Vegetation Classification in Typical Humid Mountainous Areas of South China based on the UAV Multispectral Remote Sensing |
Nina ZHANG1,2( ),Ke ZHANG1,2,3,4,5( ),Yunping LI1,2,Xi LI1,2,Tao LIU2,1 |
1.State Key Laboratory of Hydrology-Water Recourses and Hydraulic Engineering,Hohai University,Nanjing 210098,China 2.College of Hydrology and Water recourses,Hohai University,Nanjing 210098,China 3.Yangtze Institute for Conservation and Development,Nanjing 210098,China 4.CMA-HHU Joint Laboratory for Hydrometeorological Studies,Nanjing 210098,China 5.Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 210098, China |
引用本文:
张妮娜,张珂,李运平,李曦,刘涛. 中国南方典型湿润山区植被类型的无人机多光谱遥感机器学习分类研究[J]. 遥感技术与应用, 2023, 38(1): 163-172.
Nina ZHANG,Ke ZHANG,Yunping LI,Xi LI,Tao LIU. Study on Machine Learning Methods for Vegetation Classification in Typical Humid Mountainous Areas of South China based on the UAV Multispectral Remote Sensing. Remote Sensing Technology and Application, 2023, 38(1): 163-172.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.1.0163
或
http://www.rsta.ac.cn/CN/Y2023/V38/I1/163
|
1 |
ZHANG K,ALI A, ANTONARAKIS A, et al. The sensitivity of North American Terrestrial carbon fluxes to spatial and temporal variation in soil moisture:An analysis using radar‐derived estimates of root‐aone soil moisture[J]. Journal of Geophysical Research:Biogeosciences,2019,124(11):3208-3231.
|
2 |
LIU Hongwei, GAO Fei, YU Zhongbo, et al. Study on temporal-spatial variability of soil moisture content on hillslope in a humid area[J]. Water Resources Protection,2016,32(5): 17-23.
|
2 |
刘宏伟, 高菲, 余钟波, 等. 湿润地区坡面土壤含水率时空变异性研究[J]. 水资源保护,2016,32(5):17-23.
|
3 |
LI Qiong, GONG Junfu, WANG Hongxin, et al. Application and comparison of hydrological models in small watersheds of humid regions[J]. South-to-North Transfers and Water Science & Technology, 2020, 18(4):81-86.
|
3 |
李琼, 龚珺夫, 王洪心, 等. 湿润地区山区小流域水文模型应用与比较[J]. 南水北调与水利科技(中英文), 2020, 18(4): 81-86.
|
4 |
LEE E, LIVINO A, HAN S, et al. Land cover change explains the increasing discharge of the Parana River[J]. Regional environmental change, 2018, 18(6): 1871-1881.
|
5 |
ZHANG K, KIMBALL J S, NEMANI R R, et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration[J]. Scientific Reports, 2015, 5(1): 1-9.
|
6 |
DU Yong, LI Jianzhu, NIU Kaijie, et al. Analysis of vegetation change and its impact on natural runoff in the mountain area of the Yongding River Basin from 1982 to 2015[J], Journal of Hydraulic Engineering,2021,52(11):1309-1323.
|
6 |
杜勇,李建柱,牛凯杰,等. 1982~2015年永定河山区植被变化及对天然径流的影响[J]. 水利学报,2021,52(11):1309-1323.
|
7 |
QIAO L, ZOU C B, STEBLER E, et al. Woody plant encroachment reduces annual runoff and shifts runoff mechanisms in the tallgrass prairie, USA[J]. Water Resources Research, 2017, 53(6): 4838-4849.
|
8 |
LIU He, GU Lingjia, REN Ruizhi. Research progress of forest parameter acquisition based on UAV remote sensing technology[J]. Remote Sensing Technology and Application, 2021, 36(3): 489-501.
|
8 |
刘鹤, 顾玲嘉, 任瑞治. 基于无人机遥感技术的森林参数获取研究进展[J]. 遥感技术与应用, 2021, 36(3): 489-501.
|
9 |
ZHANG Ke, LIU Linxin, CHAO Lijun, et al. Spatiotemporal variations of terrestrial ecosystem water use efficiency in Yunnan Province from 2000 to 2014[J], Water Resources Protection,2019,35(5):1-5.
|
9 |
张珂, 刘林鑫, 晁丽君, 等. 2000~2014年云南省陆地生态系统水分利用效率的时空变化[J]. 水资源保护, 2019, 35(5):1-5.
|
10 |
FU Wei, XU Hanqiu, WANG Meiya, et al. Vegetation classification and variation assessment in a typical red soil erosion area in Southern China:Hetian, Changting Country of Fujian Province[J]. Remote Sensing Technology and Application, 2017, 32(3): 546-555.
|
10 |
付伟, 徐涵秋, 王美雅, 等. 南方红壤典型水土流失区植被分类及植被类型变化的遥感评估——以福建省长汀县河田地区为例[J]. 遥感技术与应用, 2017, 32(3): 546-555.
|
11 |
YANG Hongyan, DU Jianmin, RUAN Peiying, et al. Vegetation classification of desert steppe based on unmanned aerial vehocle remote sensing and random forest[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(6): 186-194.
|
11 |
杨红艳, 杜健民, 阮培英, 等. 基于无人机遥感与随机森林的荒漠草原植被分类方法[J]. 农业机械学报, 2021,52(6):186-194.
|
12 |
COLOMINA I, MOLINA P. Unmanned aerial systems for photogrammetry and remote sensing: A review - ScienceDirect[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92(2): 79-97.
|
13 |
HU Yina, AN Ru, AI Zetian, et al. Researches on grass species fine identification based on UAV hyperspectral images in three-river source region[J]. Remote Sensing Technology and Application,2021,36(4):926-935.
|
13 |
胡宜娜, 安如, 艾泽天, 等. 基于无人机高光谱影像的三江源草种精细识别研究[J]. 遥感技术与应用,2021,36(4):926-935.
|
14 |
LI Hongda, GAO Xiaohong, TANG Min. Land cover classification for different spatial resolution images from CNN[J]. Remote Sensing Technology and Application, 2020, 35(4): 749-758.
|
14 |
李宏达, 高小红, 汤敏. 基于CNN的不同空间分辨率影像土地覆被分类研究[J]. 遥感技术与应用, 2020, 35(4): 749-758.
|
15 |
WANG Hongshu, LI Shihua, GUO Jiawei, et al. Retrieval of the leaf area density of Magnolia woody canopy with terrestrial Laser-scanning data[J]. Journal of Remote Sensing, 2016, 20(4): 570–578.
|
15 |
王洪蜀, 李世华, 郭加伟, 等. 地基激光雷达的玉兰林冠层叶面积密度反演[J]. 遥感学报, 2016, 20(4): 570-578.
|
16 |
LI Nan. Long-term remote sensing dynamic monitoring and ecological assessment of the coastal wetland in Hangzhou Bay[D]. Nanjing: Nanjing Forestry University, 2020.
|
16 |
李楠. 杭州湾滨海湿地长时间尺度遥感动态监测及生态评估[D]. 南京: 南京林业大学, 2020.
|
17 |
YAO Lianqiu. Research on remote sensing image land cover classification based on expert knowledge and improved SEATH algorithm[D]. Nanjing: Nanjing Normal University, 2018.
|
17 |
姚恋秋. 基于专家知识和改进SEATH算法的遥感影像土地覆被分类研究[D]. 南京: 南京师范大学, 2018.
|
18 |
SONG Minghui. Object-oriented urban land classfication with GF-2 remote sensing image[J]. Remote Sensing Technology and Application, 2019, 34(3): 547-552.
|
18 |
宋明辉. 基于高分二号数据的面向对象城市土地利用分类研究[J]. 遥感技术与应用, 2019, 34(3): 547-552.
|
19 |
GILBERTSON J K, KEMP J, NIEKERK A V. Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques[J]. Computers & Electronics in Agriculture,2017,134(5):151-159.
|
20 |
RACZKO E, ZAGAJEWSKI B.Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images[J].European Journal of Remote Sensing,2017,50(1):144-154.
|
21 |
KUMAR P, GUPTA D K, MISHRA V N, et al. Comparison of support vector machine, artificial neural network, and spectral angle mapper algorithms for crop classification using LISS IV data[J]. International Journal of Remote Sensing, 2015, 36(5-6): 1604-1617.
|
22 |
GILBERTSON J K. Machine learning for object-based crop classification using multi-temporal Landsat 8 imagery[D]. Stellenbosch: Stellenbosch University, 2017.
|
23 |
SHAO Wenjing, SUN Weiwei, YANG Gang. Comparison of texture feature extraction methods for hyperspectral imagery classification[J]. Remote Sensing Technology and Application, 2021, 36(2): 431-440.
|
23 |
邵文静, 孙伟伟, 杨刚. 高光谱遥感影像纹理特征提取的对比分析[J]. 遥感技术与应用, 2021, 36(2): 431-440.
|
24 |
WANG Huaijing, TAN Bingxiang, FANG Xiufeng, et al. Precise classification of forest types use Hyperion image based on the C5.0 decision tree algorithm[J]. Journal of Zhejiang A&F University, 2018, 35(4): 147-157.
|
24 |
王怀警, 谭炳香, 房秀凤, 等. C5.0决策树Hyperion影像森林类型精细分类方法[J]. 浙江农林大学学报, 2018, 35(4): 147-157.
|
25 |
Technical regulations for inventory for forest management planning and design [S]. 2011,GB/T 26424-2010:36.
|
25 |
森林资源规划设计调查技术规程 [S].2011,GB/T 26424-2010:36.
|
26 |
HUETE A, DIDAN K, MIURA T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002, 83(1-2): 195-213.
|
27 |
LI Xiang, LIU Kai, ZHU Yuanhui, et al. Study on the mangrove species classification based on ZY-3 image[J]. Remote Sensing Technology and Application, 2018,33(2):360-369.
|
27 |
李想, 刘凯, 朱远辉, 等. 基于资源三号影像的红树林物种分类研究[J]. 遥感技术与应用, 2018,33(2):360-369.
|
28 |
ZHANG Yu, ZHANG Liyuan, ZHANG Huihui, et al. Crop coefficient estimation method ofmaize by UAV remote sensing and soil moisture monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(1):83-89.
|
28 |
张瑜, 张立元, Zhang Huihui, 等. 玉米作物系数无人机遥感协同地面水分监测估算方法研究[J]. 农业工程学报, 2019, 35(1): 83-89.
|
29 |
HUETE A R. A Soil-Adjusted Vegetation Index(SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295-309.
|
30 |
FENG Jianhui, YANG Yujing. Research on extracting texture feature image based on gray level co-occurrence matrix[J]. Beijing Surveying and Mapping, 2007, 4(3): 19-22.
|
30 |
冯建辉, 杨玉静. 基于灰度共生矩阵提取纹理特征图像的研究[J]. 北京测绘, 2007, 4(3): 19-22.
|
31 |
FRIEDL M A, BRODLEY C E. Decision tree classification of land cover from remotely sensed data[J]. Remote Sensing of Environment, 1997, 61(3): 399-409.
|
32 |
BREIMAN L. Random forest[J]. Machine Learning, 2001, 45(1): 5-32.
|
33 |
VAPNIK V.Statistical Learning Theory[M]. New York:Wiley,1998.
|
34 |
FREUND Y, SCHAPIRE R E. A decision-theoretic generali-zation of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences,1997,55(1):119-139.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|