Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (1): 200-213    DOI: 10.11873/j.issn.1004-0323.2023.1.0200
遥感应用     
基于不同干旱指数的祁连山国家公园水热特征分析
田畅(),王让会(),彭擎,刘春伟,周丽敏
南京信息工程大学 应用气象学院,江苏 南京 210044
Analysis of Hydrothermal Characteristics based on Different Drought Indices in Qilian Mountain National Park
Chang TIAN(),Ranghui WANG(),Qing PENG,Chunwei LIU,Limin ZHOU
School of Applied Meteorology,Nanjing University of Information Science and Technology,Nanjing 210044,China
 全文: PDF(7239 KB)   HTML
摘要:

水热资源的循环与流动直接影响区域生态系统耦合关系。祁连山国家公园是我国第一批国家公园体制试点区之一,也是西北地区重要的生态屏障。基于气象干旱监测指标(SPEI)和遥感干旱监测指标(TVDI),运用Mann-Kendall非参数趋势和突变检验法、Morlet小波分析等方法探究祁连山国家公园1989~2019年水热特征。结果表明:SPEI与TVDI在时空尺度上表现出一致性,但TVDI对水热变化的反馈存在时滞,因此在研究区内更宜采用SPEI指标进行水热状况评估;研究区存在缓慢的湿润趋势,较为严重的干旱事件多发生在夏季;以肃南站—野牛沟站为划分祁连山国家公园的干湿趋势界限,西部大部分地区均存在显著变湿趋势,东部则存在一条带状趋湿区域;存在5~9年和15~20年两类时间尺度的周期变化,且贯穿整个分析时段;目前该区正处于偏湿期,未来有持续偏湿趋势。研究结果可为祁连山国家公园建设与管理提供参考依据。

关键词: 标准化降水蒸散指数温度植被干旱指数水热特征小波分析祁连山国家公园    
Abstract:

The circulation and flow of water and heat resources directly affect the coupling relationship of regional ecosystems. Qilian Mountain National Park is one of the first national park system pilot areas in China, and also an important ecological barrier in northwest China. Using meteorological drought monitoring index (SPEI) and ecological drought monitoring index (TVDI), the spatial and temporal distribution of heat resources were analyzed in Qilian Mountain National Park, during the period of 1989~2019. The Theil-Sen Median trend analysis and Mann-Kendall trend test were utilized to detect the spatiotemporal characteristics and trend on both seasonal and annual scales. Comparing the suitability of two drought index and further research on the periodicity was by Morlet wavelet analysis. The results show that SPEI is more effective in assessing hydro-thermal feature in the area studied; There was a slow change from drought to wetting as a whole, occurred around 2014;Severe drought events mostly occurred in summer; Taking Sunan Station-Yeniugou Station as the boundary of dry-wet trend, significant humidifying trends exist in most parts of the western region, while a zonal humidifying region runs through the western boundary; Under different time scales, SPEI has two types of periodic changes of 5~9 years and 15~20 years that run through the entire study period; The area is currently in a wet period, and there will be a continued wet trend in the future.

Key words: SPEI    TVDI    Hydro-thermal feature    Wavelet analysis    Qilian Mountain National Park
收稿日期: 2021-09-18 出版日期: 2023-04-12
ZTFLH:  X171.1  
基金资助: 国家重点研发计划(2019YFC0507403)
通讯作者: 王让会     E-mail: tianchangcc@163.com;rhwang@nuist.edu.cn
作者简介: 田 畅(1996-),女,河南平顶山人,硕士研究生,主要从事气象生态等领域研究。E?mail: tianchangcc@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
田畅
王让会
彭擎
刘春伟
周丽敏

引用本文:

田畅,王让会,彭擎,刘春伟,周丽敏. 基于不同干旱指数的祁连山国家公园水热特征分析[J]. 遥感技术与应用, 2023, 38(1): 200-213.

Chang TIAN,Ranghui WANG,Qing PENG,Chunwei LIU,Limin ZHOU. Analysis of Hydrothermal Characteristics based on Different Drought Indices in Qilian Mountain National Park. Remote Sensing Technology and Application, 2023, 38(1): 200-213.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.1.0200        http://www.rsta.ac.cn/CN/Y2023/V38/I1/200

图1  研究区范围与气象站点分布
SPEI值程度
SPEI≤-2极度干旱
-2<SPEI≤-1.5重度干旱
-1.5<SPEI≤-1轻度干旱
-1<SPEI≤1正常
1<SPEI≤1.5轻度湿润
1.5<SPEI≤2重度湿润
2<SPEI极度湿润
表1  SPEI干湿等级划分标准
TVDI值程度
0<TVDI≤0.2重度湿润
0.2<TVDI≤0.4轻度湿润
0.4<TVDI≤0.6正常
0.6<TVDI≤0.8轻度干旱
0.8<TVDI≤1重度干旱
表2  TVDI干湿等级划分标准
图2  不同时间尺度SPEI时间序列及MK突变分析
图3  TVDI时间序列及MK突变分析
SlopeZ值趋势变化
≥0.000 5≥1.96显著增加
≥0.000 5-1.96~1.96较显著增加
-0.000 5~0.000 5-1.96~1.96无明显变化
<0.000 5-1.96~1.96较显著减小
<0.000 5<1.96显著减小
表3  干旱指标变化趋势统计
图4  SPEI空间变化趋势及水热特征
图5  TVDI空间变化趋势及水热特征
图6  SPEI-12、TVDI与降水、气温相关系数及显著性检验结果
图7  祁连山国家公园不同时间尺度小波分析图
图8  1989~2019年祁连山国家公园土地利用转移桑基图
1990~2009年2010~2019年
降水气温SPEI降水气温SPEI
草地→林地0.024 60.007 1-0.003 20.0660.004 70.015
裸地→草地0.036 60.006 8-0.004 20.071 50.003 90.021 1
未发生变化0.031 00.006 50.000 30.078 20.003 10.012 2
表4  不同土地利用变化区域气温、降水及SPEI变化趋势
1 WANG Ranghui, ZHANG Huizhi, ZHAO Zhenyong. Characteristic analysis on ecosystem coupling relations in arid zone[J], Ecology and Environmental Sciences,2004,31(3):347-349.
1 王让会, 张慧芝, 赵振勇,等.干旱区生态系统耦合关系的特征分析[J],生态环境学报,2004,31(3):347-349.
2 CHEN Fei, YANG Shenbin, WANG Chunling,et al. Spatial and temporal distribution of spring drought in Northwest China based on standardized precipitation evapotranspiration index[J]. Journal of Arid Meteorology,2016,34(1):34-42.
2 陈斐, 杨沈斌, 王春玲,等.基于SPEI指数的西北地区春旱时空分布特征[J].干旱气象,2016,34(1):34-42.
3 REN Peigui, ZHANG Bo, ZHANG Tiaofeng, et al. Trend analysis of meteorological drought change in Northwest China based on standardized precipitation evapotranspiration index[J]. Bulletin of Soil and Water Conservation,2014,34(1):182-187.
3 任培贵, 张勃, 张调风,等.基于SPEI的中国西北地区气象干旱变化趋势分析[J].水土保持通报,2014,34(1):182-187.
4 ZOU Lei, YU Jiangyou, XIA Jun, et al. Temporal-spatial variation characteristics of drought in the Weihe River basin based on SPEI[J]. Arid Land Geography,2020,43(2):329-338.
4 邹磊, 余江游, 夏军,等.基于SPEI的渭河流域干旱时空变化特征分析[J].干旱区地理,2020,43(2):329-338.
5 YANG Y, GAN T Y, TAN X. Spatiotemporal changes of drought characteristics and their dynamic drivers in Canada[J]. Atmospheric Research, 2020,232:104695.1-104695.17.
6 WU J, TAN X, CHEN X, et al. Dynamic changes of the dryness/wetness characteristics in the largest river basin of South China and their possible climate driving factors[J]. Atmospheric Research, 2020,232:104685.1-104685.12.
7 LI Lei, ZHENG Xingming, ZHAO Kai, et al. Precision evaluation of drought index based on CCI soil moisture products and its effect on grain yield in Northeast China[J]. Remote Sensing Technology and Application,2020,35(1):111-119.
7 李雷, 郑兴明, 赵凯,等.基于CCI土壤水分产品的干旱指数精度评价及其对东北地区粮食产量的影响[J].遥感技术与应用,2020,35(1):111-119.
8 WANG Zhanpeng, SONG Lisheng, LAN Ziyan, et al. Evaluation of drought indices of metrology, hydrology and agriculture over the continental United States[J]. Remote Sensing Technology and Application. ,2019,34(4):865-873.
8 王展鹏, 宋立生, 兰子焱,等.考虑下垫面类型的干旱指数比较研究[J].遥感技术与应用,2019,34(4):865-873.
9 YU Junlin, LUO Ya, ZHAO Zhilong, et al. Drought monitor in Karst Gorge Area based on Landsat-8 and TVDI[J]. Bulletin of Soil and Water Conservation,2019,39(1):104-113.
9 余军林, 罗娅, 赵志龙,等.基于TVDI和Landsat-8的喀斯特峡谷区干旱监测[J].水土保持通报,2019,39(1):104-113.
10 GUO Hu, WANG Ying, WANG Fang. Overview of remote sensing approaches to drought monitoring[J]. Remote Sensing Technology and Application,2008,22(1):111-116.
10 郭虎, 王瑛, 王芳.旱灾灾情监测中的遥感应用综述[J]. 遥感技术与应用,2008,22(1):111-116.
11 KANG Yao, GUO Enliang, WANG Yongfang, et al. Application of temperature vegetation dryness index for drought monitoring in Mongolian Plateau[J]. Chinese Journal of Applied Ecology,2021,32(7):2534-2544.
11 康尧, 郭恩亮, 王永芳,等.温度植被干旱指数在蒙古高原干旱监测中的应用[J].应用生态学报,2021,32(7):2534-2544.
12 CHENG Wei, XIN Xiaoping. Analysis of spatial-temporal characteristics of drought variation in grassland area of Inner Mongolia based on TVDI[J]. Scientia Agricultura Sinica,2020,53(13):2728-2742.
12 程伟, 辛晓平.基于TVDI的内蒙古草地干旱变化特征分析[J].中国农业科学,2020,53(13):2728-2742.
13 YAO Junqiang, YANG Qing, LIU Zhihui, et al. Spatio-temporal change of precipitation in arid region of the Northwest China[J]. Acta Ecologica Sinica,2015,35(17):5846-5855.
13 姚俊强,杨青,刘志辉,等.中国西北干旱区降水时空分布特征[J].生态学报,2015,35(17):5846-5855.
14 BAI Qingshun, YAN Pengcheng, CAI Dihua, et al. Inter-decadal change characteristics of different grades drought in Northwest China in recent 56 years[J]. Journal of Arid Meteorology,2019,37(5):722-728.
14 柏庆顺, 颜鹏程, 蔡迪花,等.近56A中国西北地区不同强度干旱的年代际变化特征[J].干旱气象,2019,37(5):722-728.
15 GUO Xiaoqin, LUO Yongzhong. Study on characteristics of seasonal drought composite index in the Qilian Mountain area from 1961 to 2016[J]. Journal of Meteorology and Environment,2019,35(1):88-93.
15 郭小芹, 罗永忠.1961—2016年祁连山区季节性干旱综合指数特征分析[J].气象与环境学报,2019,35(1):88-93.
16 TAN Jianbo, LI Ainong, LEI Guangbin. Contrast on Anusplin and Cokriging meteorological spatial interpolation in Southeastern Margin of Qinghai-Xizang plateau[J]. Plateau Meteorology,2016,35(4):875-886.
16 谭剑波, 李爱农, 雷光斌.青藏高原东南缘气象要素Anusplin和Cokriging空间插值对比分析[J].高原气象,2016,35(4):875-886.
17 HUTCHINSON M F, GESSLER P E.Splines-more than just a smooth interpolator[J]. Geoderma,1994,62(1-3):45-67.
18 YUE S, PILON P, CAVADIAS G.Power of the Mann-kendall and Spearman's Rho tests for detecting monotonic trends in hydrological series[J]. Journal of Hydrology,2002,259:254-271.
19 KENDALL M G. Rank correlation methods[J]. British Journal of Psychology, 1990, 25(1):86–91.
20 CUI Jingtai. An introduction to wavelet[M]. Xi'an:Xi'an Jiaotong University Press, 1995.
20 崔锦泰. 小波分析导论[M]. 西安:西安交通大学出版社, 1995.
21 ZHANG Xueqin, SUN Yang, MAO Weiyi, et al. Regional response of temperature change in the arid regions of China to global warming[J]. Arid Zone Research,2010,27(4):592-599.
21 张雪芹, 孙杨, 毛炜峄,等.中国干旱区气温变化对全球变暖的区域响应[J].干旱区研究,2010,27(4):592-599.
22 VICENTE-SERRANO S M, BEGUERIA S, LÓPEZ-MORENO J I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7):1696-1718.
23 LI Chao, LI Xuemei, TIAN Yalin, et al. Time and space fusion model comparison of temperature vegetation drought index[J].Remote Sensing Technology and Application,2020,35(4):832-844.
23 李超, 李雪梅, 田亚林,等.温度植被干旱指数时空融合模型对比[J].遥感技术与应用,2020,35(4):832-844.
24 JIANG Yazhen, ZHANG Yujie, SUN Chen, et al. Study on the application of TVDI in soil moisture monitoring in Hebei province for dry-hot wind disaster warning[J], Remote Sensing Technology and Application,2014,29(3):442-450.
24 姜亚珍, 张瑜洁, 孙琛,等.基于TVDI河北省干热风同期土壤湿度监测研究[J],遥感技术与应用,2014,29(3):442-450.
25 SANDHOLT I, RASMUSSEN K, ANDERSEN J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote sensing of environment,2002,79(2):213-224.
26 PENG Qing, WANG Ranghui, JIANG Yelin, et al. Adaptability of drought situation monitor in Xinjiang with The NDVI-LST index[J].Acta Ecologica Sinica,2018,38(13):4694-4703.
26 彭擎, 王让会, 蒋烨林,等.植被—地温指数(NDVI-LST)在新疆干旱监测中的适用性[J].生态学报,2018,38(13):4694-4703.
27 HUANG Ying, MAO Wenqian, WANG Xiaoya, et al. Temporal and spatial distribution of precipitation in the qilian mountain and its surrounding areas in recent 39 years[J]. Journal of Arid Meteorology,2020,38(4):527-534.
27 黄颖, 毛文茜, 王潇雅,等.近39 a祁连山及其周边地区降水量时空分布特征[J].干旱气象,2020,38(4):527-534.
28 ZHOU Zhuangzhuang, REN Zongping, LI Peng, et al. Response of soil moisture content to precipitation under different vegetation coverages[J]. Science of Soil and Water Conservation,2020,18(6):62-71.
28 周壮壮, 任宗萍, 李鹏,等.不同植被覆盖下土壤含水量对降水的分级响应[J]. 中国水土保持科学,2020,18(6):62-71.
29 LIU Peiyun, LIU Deyu.Mechanism and effect of drought resi-sting and disaster reduction of forest[J]. Forest Inventory and Planning,2013,38(3):81-84.
29 刘佩云,刘德隅.森林抗旱减灾机理和作用初探[J].林业调查规划,2013,38(3):81-84.
30 HE Fuhong, HUANG Mingbin, LI Jingbao. Role of soil water reservoirs and forests in regulating water resources[J]. Soil and Environmental Sciences,2001,10(1):42-44.
30 何福红, 黄明斌, 李景保.土壤水库和森林植被对水资源的调节作用[J].土壤与环境,2001,10(1):42-44.
31 SHI Yafeng, SHEN Yongping, LI Dongliang,et al.Discussion on the present climate change from warm-dry to warm wet in Northwest China[J].Quaternary Sciences,2003,23(2):152-164.
31 施雅风, 沈永平, 李栋梁,等.中国西北气候由暖干向暖湿转型的特征和趋势探讨[J].第四纪研究,2003,23(2):152-164.
32 JIA Wenxiong, HE Yuanqing, LI Zongxing, et al. Temporal and spatial characteristics of dry-wet conditions from 1960 to 2006 in Qilian Mountains and Hexi Corridor[J]. Earth Science(Journal of China University of Geosciences),2010,35(2):268-276.
32 贾文雄, 何元庆, 李宗省,等.祁连山及河西走廊地表干湿变化的时空分布[J]. 地球科学(中国地质大学学报),2010,35(2):268-276.
33 PEI Hongwei, LIU Mengzhu, LI Yali,et al. Impact of ecological restoration measures on ecosystem services in arid and semi-arid area:A case study of the Bashang area in Hebei Province[J].Research of Soil and Water Conservation,2022,29(2):192-199,205.
33 裴宏伟, 刘孟竹, 李雅丽, 等. 生态修复措施对干旱半干旱地区生态系统服务影响研究——以河北坝上地区为例[J]. 水土保持研究,2022,29(2):192-199,205.
[1] 杜恩宇,陈方,贾慧聪,王雷,杨阿强. 基于Landsat 8卫星数据的解放闸灌域灌溉面积监测研究[J]. 遥感技术与应用, 2022, 37(3): 620-628.
[2] 孙景霞,张冬有,侯宇初. 基于多源遥感数据协同反演森林地表土壤水分研究[J]. 遥感技术与应用, 2021, 36(3): 564-570.
[3] 刘莹,朱秀芳,徐昆,陈令仪,郭锐. 干旱对灌溉和雨养农田生态系统生产力的影响对比分析[J]. 遥感技术与应用, 2021, 36(2): 381-390.
[4] 封敏,李再明,邱炳文,王重洋,罗钰涵. 21世纪初中国农作物与自然植被物候时空差异[J]. 遥感技术与应用, 2016, 31(5): 1003-1012.
[5] 王金亮,曾浩,王艳英,刘广杰. 基于小波分析的TM 遥感图像超分辨率重建[J]. 遥感技术与应用, 2016, 31(3): 476-480.
[6] 王慧慧,周廷刚,杜嘉,苗正红. 温度植被旱情指数在吉林省干旱监测中的应用[J]. 遥感技术与应用, 2013, 28(2): 324-329.
[7] 汤旭光, 刘殿伟, 宋开山, 张 柏, 姜广甲, 杨 飞, 徐京萍, . 东北主要绿化树种叶面积指数(LAI)高光谱估算模型研究[J]. 遥感技术与应用, 2010, 25(3): 334-341.
[8] 魏国栓,沈润平,丁国香. 仪征地区农田深层土壤湿度遥感反演初探[J]. 遥感技术与应用, 2008, 23(1): 36-41.
[9] 姚春生,张增祥,汪潇. 使用温度植被干旱指数法(TVDI)反演新疆土壤湿度[J]. 遥感技术与应用, 2004, 19(6): 473-479.
[10] 杨劲松,周长宝,黄韦艮,许明光. 合成孔径雷达图像内波参数提取方法研究[J]. 遥感技术与应用, 2000, 15(1): 6-9.