Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (3): 708-717    DOI: 10.11873/j.issn.1004-0323.2023.3.0708
遥感应用     
GEOV3和GLASS植被覆盖度产品在中国西南地区时空差异及其影响因子分析
黄仁杰1(),陈建军1,2(),林星辰1,尤号田1,2,韩小文1,2
1.桂林理工大学测绘地理信息学院,广西 桂林 541004
2.桂林理工大学 广西空间信息与测绘重点实验室,广西 桂林 541004
Spatio-temporal Differences and Influencing Factors of GEOV3 and GLASS Fractional Vegetation Cover Products in Southwest China
Renjie HUANG1(),Jianjun CHEN1,2(),Xinchen LIN1,Haotian YOU1,2,Xiaowen HAN1,2
1.College of Geomatics and Geoinformation,Guilin University of Technology,Guilin 541004,China
2.Guangxi Key Laboratory of Spatial Information and Geomatics,Guilin University of Technology,Guilin,541004,China
 全文: PDF(4639 KB)   HTML
摘要:

植被覆盖度(Fractional Vegetation Cover,FVC)是评价生态环境质量和表征地表植被覆盖与生长状况的重要指标。目前国内外已有不少FVC产品,然而不同的FVC产品在时间和空间上存在一定的差异。为了准确的认识FVC产品差异及差异产生的原因,研究选取GEOV3和GLASS两种全球FVC产品,通过重采样、差值分析等方法,评估其在中国西南区域的时空差异,结合地形和土地利用数据,分析地形和土地利用类型对FVC产品的影响。结果表明:①GLASS与GEOV3两种产品存在着明显的时空差异并带有季节特征,在春夏两季GLASS FVC值略低于GEOV3 FVC值,秋季二者值差异最小,而冬季GLASS FVC值明显高于GEOV3 FVC值;②两种产品的值在不同土地利用类型上差异明显,差异大小依次为:灌木>林地>耕地>草地>其它,且冬季差异最大;③两种产品的值在不同坡度和海拔上差异也较大,且坡度的变化对产品的影响更明显。本研究揭示了导致FVC产品间不一致性的影响因素,可为山区FVC产品生成算法的改进提供参考。

关键词: 植被覆盖度产品时空差异影响因子地形土地利用类型    
Abstract:

Fractional Vegetation Cover (FVC) is an important index to evaluate the quality of ecological environment and characterize the ground cover and growth status of vegetation. There are many FVC products at home and abroad. However, different FVC products have certain spatio-temporal differences. In order to accurately understand the differences of FVC products and their causes, two global FVC products, GEOV3 and GLASS, were selected to assess their spatial and temporal differences in southwest China by resampling and difference analysis, and to analyze the influence of topography and land use type on FVC products by combining topographic and land use data. The results show that: (1) there were obvious spatial and temporal differences between GLASS and GEOV3 products with seasonal characteristics, with GLASS FVC values slightly lower than GEOV3 FVC values in spring and summer, and the smallest difference between the two values in autumn, while GLASS FVC values were significantly higher than GEOV3 FVC values in winter; (2) the values of the two products differed significantly in different land use types, and the differences were: shrub > forest > cropland > grassland > other, and the differences were the largest in winter; (3) the values of the two products also differed significantly in different slopes and altitudes, and the changes in slope had more obvious effects on the products. This study revealed the influencing factors that lead to inconsistency among FVC products, which can provide a reference for the improvement of FVC product generation algorithms in mountainous areas.

Key words: Fractional vegetation cover products    Spatial and temporal differences    Influence factors    Terrain    Land use type
收稿日期: 2021-11-02 出版日期: 2023-07-11
ZTFLH:  TP75  
基金资助: 广西科技计划项目(桂科AD19245032);国家自然科学青年基金项目(41901370);广西自然科学青年基金项目(2018GXNSFBA281054);广西空间信息与测绘重点实验室项目(19?050?11?22);广西八桂学者专项项目(周国清)和桂林理工大学科研启动基金(GUT/QDJJ2017069)
通讯作者: 陈建军     E-mail: huangrj@glut.edu.cn;chenjj@glut.edu.cn
作者简介: 黄仁杰(1998—),男,广西柳州人,硕士研究生,主要从事生态遥感研究。E?mail:huangrj@glut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄仁杰
陈建军
林星辰
尤号田
韩小文

引用本文:

黄仁杰,陈建军,林星辰,尤号田,韩小文. GEOV3和GLASS植被覆盖度产品在中国西南地区时空差异及其影响因子分析[J]. 遥感技术与应用, 2023, 38(3): 708-717.

Renjie HUANG,Jianjun CHEN,Xinchen LIN,Haotian YOU,Xiaowen HAN. Spatio-temporal Differences and Influencing Factors of GEOV3 and GLASS Fractional Vegetation Cover Products in Southwest China. Remote Sensing Technology and Application, 2023, 38(3): 708-717.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.3.0708        http://www.rsta.ac.cn/CN/Y2023/V38/I3/708

图1  研究区位置与地形特征审图号:GS(2019)1822
FVC 产品时间分辨率/d空间分辨率/m时间范围/a空间范围
CYCLOPES101 0001998~2007全球
MERIS103002002~2012全球
GEOV1101 0001999~至今全球
GEOV2101 0001999~至今全球
GEOV3103002014~至今全球
GLASS85002000~至今全球
表1  基于机器学习算法的FVC产品信息[5]
图2  西南地区坡度图审图号:GS(2019)1822
图3  西南地区土地利用类型审图号:GS(2019)1822
图4  西南地区不同差值区间面积占比
图5  2018年FVC产品差值影像 (GLASS - GEOV3) 审图号:GS(2019)1822
图6  FVC产品差值与土地利用类型的关系
土地利用类型春季夏季秋季冬季
耕地-0.080-0.085-0.0290.095
林地-0.060-0.0530.0060.135
草地-0.055-0.075-0.0070.083
灌木-0.067-0.0510.0400.138
其它-0.068-0.069-0.0230.024
表2  产品在5种土地利用类型中的差值
图7  FVC产品差值与海拔的关系
图8  FVC产品差值与坡度的关系
1 JIA Kun, YAO Yunjun, WEI Xiangqin, et al. A review on fractional vegetation cover estimation using remote sensing[J]. Advances in Earth Science,2013,28(7):774-782.
1 贾坤,姚云军,魏香琴,等. 植被覆盖度遥感估算研究进展[J].地球科学进展,2013,28(7):774-782.
2 CHEN Xuexiong, CHANG Qingrui, BI Rutian, et al. Estimation of vegetation coverage based on Normalized Difference Mountain Vegetation Index (NDMVI) in Lin County, Shanxi[J]. Province Journal of Basic Science and Engineering,2020,28(2):310-320.
2 陈学兄,常庆瑞,毕如田,等. 基于山地植被指数估算临县植被覆盖度[J].应用基础与工程科学学报,2020,28(2):310-320.
3 WU Wei, YANG Feiling, WANG Junjun, et al. Dynamic monitoring and analysis of ecosystem disturbances in major vegetation types based on MODIS time series data in southwest China[J]. Geographical Research,2021,40(5):1478-1494.
3 吴伟,杨飞龄,王军军,等. 基于MODIS时序数据的中国西南地区主要植被生态系统干扰动态监测及分析[J].地理研究,2021,40(5):1478-1494.
4 VERGER A, BARET F, WEISS M. Algorithm theoretical basis document for collection 1km version 2[EB/OL]. (2019-04-01) [2022-03-09].
5 LIU D, JIA K, JIANG H, et al. Fractional vegetation cover estimation algorithm for FY-3B reflectance data based on random forest regression method[J]. Remote Sensing, 2021, 13(11): 2165. DOI: 10.3390/rs13112165
doi: 10.3390/rs13112165
6 LIU D, YANG L, JIA K, et al. Global fractional vegetation cover estimation algorithm for VIIRS reflectance data based on machine learning methods[J]. Remote Sensing, 2018, 10(10): 1648. DOI: 10.3390/rs10101648
doi: 10.3390/rs10101648
7 FUSTER B, CAMACHO F, VERGER A, et al. Quality assessment of PROBA-V LAI, fAPAR and fCOVER collection 300 m products of copernicus global land service[J]. Remote Sensing,2020,12(6):1017. DOI:10.3390/rs12061017
doi: 10.3390/rs12061017
8 JIA K, LIANG S, LIU S, et al. Global land surface fractional vegetation cover estimation using general regression neural networks from MODIS surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 4787-4796. DOI: 10.1109/TGRS.2015.2409563
doi: 10.1109/TGRS.2015.2409563
9 MU X, HUANG S, REN H, et al. Validating GEOV1 fractional vegetation cover derived from coarse-resolution remote sensing images over croplands[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,8(2):439-446. DOI:10.1109/JSTARS.2014.2342257
doi: 10.1109/JSTARS.2014.2342257
10 JIA K, YANG L, LIANG S, et al. Long-term global land surface satellite (GLASS) fractional vegetation cover product derived from MODIS and AVHRR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,12(2):508-518. DOI:10.1109/JSTARS. 2018.2854293
doi: 10.1109/JSTARS. 2018.2854293
11 FANG H, WANG Y, ZHANG Y, et al. Long-term variation of global GEOV2 and MODIS Leaf Area Index (LAI) and their uncertainties: An insight into the product stabilities[J]. Journal of Remote Sensing, 2021. DOI:10.34133/2021/9842830
doi: 10.34133/2021/9842830
12 WANG J, WU X, WEN J, et al. Upscaling in situ site-based albedo using machine learning models: Main controlling factors on results[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,60:1-16. DOI:10.1109/TGRS. 2021. 3095153
doi: 10.1109/TGRS. 2021. 3095153
13 LIU D, JIA K, WEI X, et al. Spatiotemporal comparison and Validation of three global-scale fractional vegetation cover products[J]. Remote Sensing, 2019, 11(21): 2524. DOI: 10.3390/rs11212524
doi: 10.3390/rs11212524
14 YANG Fan, LI Zhenwang, BAO Yuhai, et al. Comparation of different LAI products in Hulunber meadow steppe[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(Sup.1):153-160.
14 杨帆,李振旺,包玉海,等. 不同叶面积指数遥感产品在呼伦贝尔草甸草原的应用对比[J].农业工程学报,2016,32(S1):153-160.
15 LIU Yuan, ZHOU Maichu. Comparison of MODIS, CYCLOPES and GLASS LAI over Hanjiang river basin[J]. Remote Sensing for Land and Resources,2018,30(1):14-21.
15 刘远,周买春. MODIS,CYCLOPES和GLASS 3种LAI产品在韩江流域的对比[J]. 国土资源遥感,2018,30(1):14-21.
16 JING Jincheng, JIN Huaan, Tang Bin, et al. Intercomparison and evaluation of influencing factors among different LAI products over mountainous areas[J]. Journal of Natural Resources,2019,34(2):400-411.
16 景金城,靳华安,唐斌,等. 山区LAI遥感产品对比分析及影响因子评价[J].自然资源学报,2019,34(2):400-411.
17 MA Haiyun, ZHANG Linlin, WEI Xueqiong, et al. Spatial and temporal variations of land use and vegetation cover in southwest China from 2000 to 2015[J]. Chinese Journal of Applied Ecology,2021,32(2): 618-628.
17 马海云,张林林,魏学琼,等. 2000—2015年西南地区土地利用与植被覆盖的时空变化[J]. 应用生态学报,2021,32(2):618-628.
18 VERGER A, WEISS M. GEOV2/VGT: Near real time estimation of global biophysical variables from VEGETATION-P data[C]∥ International Workshop on Analysis of Multi-temporal Remote Sensing Images. IEEE, 2014.
19 LIANG Shunlin, CHENG Jie, JIA Kun, et al. Recent progress in land surface quantitative remote sensing[J]. Journal of Remote Sensing,2016,20(5):875-898.
19 梁顺林,程洁,贾坤,等. 陆表定量遥感反演方法的发展新动态[J]. 遥感学报,2016,20(5):875-898.
20 BAI Junhua, XIAO Qing, LIU Qinhuo, et al. The research of constructing the target to validate remote sensing products[J]. Remote Sensing Technology and Application,2015,30(3):573-578.
20 柏军华,肖青,柳钦火,等.遥感产品真实性检验靶场构建方法初步研究[J].遥感技术与应用,2015,30(3):573-578.
21 CHEN J, HUANG R, YANG Y, et al. Multi-scale validation and uncertainty analysis of GEOV3 and MuSyQ FVC products: A case study of an alpine grassland ecosystem[J]. Remote Sensing, 2022, 14(22): 5800. DOI: 10.3390/rs14225800 .
doi: 10.3390/rs14225800
22 WU Xiaodan, XIAO Qin, WEN Jianguang, et al. Advances and challenges in the validation of remote sensing albedo[J]. Journal of Remote Sensing,2019,23(1):11-23.
22 吴小丹,肖青,闻建光,等. 异质性地表反照率遥感产品真实性检验研究现状及挑战[J].遥感学报,2019,23(1):11-23.
23 WU X, WEN J, XIAO Q, et al. Upscaling of single-site-based measurements for validation of long-term coarse-pixel albedo products[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,PP(99):1-15. DOI: 10.1109/TGRS. 2019.2954879 .
doi: 10.1109/TGRS. 2019.2954879
24 WU X, WEN J, XIAO Q, et al. Coarse scale in situ albedo observations over heterogeneous snow-free land surfaces and validation strategy: A case of MODIS albedo products preliminary validation over northern China[J]. Remote Sensing of Environment,2016,184:25-39. DOI:10.1016/j.rse.2016.06.013
doi: 10.1016/j.rse.2016.06.013
25 WEISS M, BARET F, GARRIGUES S, et al. LAI and fAPAR CYCLOPES global products derived from VEGETATION. part 2: Validation and comparison with MODIS collection 4 products[J]. Remote Sensing of Environment, 2007, 110(3): 317-331. DOI: 10.1016/j.rse.2007.03.001
doi: 10.1016/j.rse.2007.03.001
26 YU H, YIN G, LIU G, et al. Validation of Sentinel-2, MODIS, CGLS, SAF, GLASS and C3S leaf area index products in maize crops[J]. Remote Sensing, 2021, 13(22): 4529. DOI: 10.3390/rs13224529
doi: 10.3390/rs13224529
27 SMETS B, JACOBS T, VERGER A. Product user manual for LAI FAPAR FCOVER collection 300m version 1[EB/OL].(2018-02-07)[2021-9-24].
28 BARET F, WEISS M, VERGER A, et al. Algorithm theoretical basis document PROBA-V products[EB/OL].(2017-03-21)[2021-9-24].
29 SÁNCHEZ-ZAPERO J, FUSTER B, CAMACHO F. Quality assessment report LAI, FAPAR, FCOVER 300m V1[EB/OL].(2019-04-18)[2021-9-24].
30 TANG H, YU K, HAGOLLE O, et al. A cloud detection method based on a time series of MODIS surface reflectance images[J]. International Journal of Digital Earth, 2013, 6(sup1): 157-171. DOI: 10.1080/17538947.2013.833313
doi: 10.1080/17538947.2013.833313
31 WOLTERS E, DIERCKX W, IORDACHE MD, et al. PROBA-V products user manual [EB/OL]. (2018-02-07)[2021-11-09]
32 LIN X, CHEN J, LOU P, et al. Improving the estimation of alpine grassland fractional vegetation cover using optimized algorithms and multi-dimensional features[J]. Plant Methods, 2021, 17(1): 1-18. DOI: /10.1186/s13007-021-00796-5
doi: /10.1186/s13007-021-00796-5
33 SONG B, LIU L, ZHAO J, et al. Validation of four coarse-resolution leaf area index products over croplands in China using field measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9372-9382. DOI: 10.1109/JSTARS.2021.3108172
doi: 10.1109/JSTARS.2021.3108172
34 LIN X, CHEN J, LOU P, et al. Quantification of alpine grassland fractional vegetation cover retrieval uncertainty based on multiscale remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5. DOI: 10.1109/LGRS.2021.3109725
doi: 10.1109/LGRS.2021.3109725
35 YANG Yongshuai, LI Ainong, JIN Huaan, et al. Intercomparison among GEOV1, GLASS LAI products over mountainous area in southwestern China[J]. Remote Sensing Technology and Application, 2016,31(3):438-450.
35 杨勇帅,李爱农,靳华安,等. 中国西南地区GEOV1、GLASS和MODIS LAI产品的对比分析[J].遥感技术与应用,2016,31(3):438-450.
36 FANG H, ZHANG Y, WEI S, et al. Validation of global moderate resolution Leaf Area Index (LAI) products over croplands in Northeastern China[J]. Remote Sensing of Environment,2019,233:111377. DOI:10.1016/j.rse.2019.111377
doi: 10.1016/j.rse.2019.111377
37 LIANG S, CHENG J, JIA K, et al. The Global Land Surface Satellite(GLASS) product suite[J].Bulletin of the American Meteorological Society,2020,102(2):1-37. DOI:10.1175/ BAMS-D-18-0341.1
doi: 10.1175/ BAMS-D-18-0341.1
38 SHAO C, SHUAI Y, TUERHANJIANG L, et al. Cross-comparison of global surface albedo operational products-MODIS,GLASS,and CGLS[J]. Remote Sensing,2021,13(23):4869. DOI: 10.3390/rs13234869
doi: 10.3390/rs13234869
39 XIAO Z, LIANG S, SUN R. Evaluation of three long time series for global Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) products[J]. IEEE Transactions on Geoscience & Remote Sensing,2018:1-16. DOI:10.1109/TGRS. 2018.2818929
doi: 10.1109/TGRS. 2018.2818929
40 HU Shi, ZHAO Ruxin, JIA Yangwen,et al.The characteristic of vegetation vertical zonality and the influential factors in typical mountains in China[J].Chinese Journal of Nature,2018,40(1): 12-16.
40 胡实,赵茹欣,贾仰文,等. 中国典型山地植被垂直地带性特征及其影响要素[J].自然杂志,2018,40(1):12-16.
[1] 张博,李雪梅,秦启勇. 中国天山积雪物候演变及驱动因素辨析[J]. 遥感技术与应用, 2022, 37(6): 1350-1360.
[2] 刘婷,赵少杰,陈迪言,刘素红,柴琳娜. 起伏地表的微波辐射特征模拟与地面实验[J]. 遥感技术与应用, 2022, 37(6): 1427-1436.
[3] 汪垚,方红亮,张英慧,李思佳. 基于机载LVIS和星载GLAS波形LiDAR数据反演森林LAI[J]. 遥感技术与应用, 2020, 35(5): 1004-1014.
[4] 侯吉宇,周艳莲,刘洋. 不同叶面积指数遥感数据模拟中国总初级生产力的时空差异[J]. 遥感技术与应用, 2020, 35(5): 1015-1027.
[5] 胡月童,武爽,冯险峰,刘洋. 面向遥感叶面积指数产品的地形校正研究[J]. 遥感技术与应用, 2020, 35(5): 1070-1078.
[6] 李雅盟,李朝奎,王书涵,方军. 一种顾及地形特征的布料模拟滤波改进方法[J]. 遥感技术与应用, 2019, 34(6): 1261-1268.
[7] 罗庆洲, 朱传武, 王培法. 使用MODIS近红外图像直接计算地表水汽压的研究—以贵州省为例[J]. 遥感技术与应用, 2019, 34(2): 398-403.
[8] 刘亲亲, 崔耀平, 刘素洁, 李楠. 中国不同土地利用类型分光辐射地表反照率研究[J]. 遥感技术与应用, 2019, 34(1): 46-56.
[9] 侯海艳,侯金,黄春林,王昀琛. 基于人工神经网络和AMSR2多频微波亮温的北疆地区雪深反演[J]. 遥感技术与应用, 2018, 33(2): 241-251.
[10] 吕利利,颉耀文,董龙龙. 基于不同地形校正模型的影像反射率对比分析[J]. 遥感技术与应用, 2017, 32(4): 751-759.
[11] 郝莹莹,罗小波,仲波,杨爱霞. 基于植被分区的中国植被类型分类方法[J]. 遥感技术与应用, 2017, 32(2): 315-323.
[12] 康婷婷,居为民,张春华. 2001~2011年中国农田最大光能利用率参数时空变化特征[J]. 遥感技术与应用, 2016, 31(4): 663-671.
[13] 边金虎,李爱农,王少楠,赵伟,雷光斌. 基于MODIS NDVI的Landsat TM影像地形阴影区光谱信息恢复方法研究[J]. 遥感技术与应用, 2016, 31(1): 12-22.
[14] 赵伟,李爱农,张正健,边金虎,靳华安,尹高飞,南希,雷光斌. 基于Landsat8热红外遥感数据的山地地表温度地形效应研究[J]. 遥感技术与应用, 2016, 31(1): 63-73.
[15] 张文博,覃志豪,刘含海. 基于分形理论的土地利用类型变化研究—以广州番禺为例[J]. 遥感技术与应用, 2015, 30(5): 952-958.