Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (4): 767-775    DOI: 10.11873/j.issn.1004-0323.2023.4.0767
宽波段多光谱数据立方专栏     
基于多要素叠加的大区域遥感拍摄分解研究
孟祥强1(),李峰1,2,3(),钟兴1,衣晓宾1,魏松岩1
1.长光卫星技术股份有限公司,吉林 长春 130102
2.中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
3.中国科学院大学,北京 100049
Study on Decomposition of Large Area based on Multi-factor Superposition for Remote Sensing Photography
Xiangqiang MENG1(),Feng LI1,2,3(),Xing ZHONG1,Xiaobin YI1,Songyan WEI1
1.Chang Guang Satellite Technology Company Limited,Changchun 130102,China
2.Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China
3.University of Chinese Academy of Sciences,Beijing 100049,China
 全文: PDF(1536 KB)   HTML
摘要:

区域目标分解是遥感卫星对大区域覆盖成像任务规划的关键环节,对快速获取大区域有效数据具有重要意义。基于对卫星大区域拍摄任务的规划经验,总结了大区域拍摄实际业务中的主要影响要素,包括卫星轨道过境、窗口区域云量和底图实时更新,提出了基于多要素叠加的大区域拍摄分解方法。该方法通过将云量要素应用到每个过境窗口的拍摄条带的分解中,基于贪婪算法的思想获得每次卫星过境中成像条件较优的拍摄条带,可提升卫星对大区域拍摄的单次数据获取有效率和整体覆盖效率。该方法已应用于“国产中高分辨率宽波段多光谱卫星数据集构建和高效国际化服务”项目,为吉林一号光谱星快速获取“一带一路”沿线区域数据提供支持。对比该方法使用前后两期区域覆盖数据获取情况,数据覆盖效率提升约44%。

关键词: 大区域分解卫星轨道过境窗口区域云量底图实时更新多要素叠加    
Abstract:

Regional target decomposition is a key part of remote sensing satellite imaging mission planning for large area coverage, which is of great significance to quickly acquire effective data in large area. Based on the planning experience of satellite photographing in large area, the main influencing factors in the actual operation of large area photographing are summarized, including satellite orbit transit, regional cloud cover at transit window and real-time update of base image data, and a large area photographing decomposition method based on multi-factor superposition is proposed. In this method, the cloud cover factor is applied to the decomposition of the strips in each transit window, and the better photographed strips in each satellite transit are obtained based on the idea of greedy algorithm, which can improve the single data acquisition efficiency and the overall coverage efficiency. This method has been applied to the project of "Data Cube for large coverage datasets of Chinese high resolution and broad band and multispectral satellite constellation", which provides support for Jilin-1 GP01/GP02 satellite to quickly acquire data in the 65 countries and regions along the Belt and Road. By comparing the acquisition of regional coverage data before and after using the method, the data coverage efficiency was improved by about 44%.

Key words: Regional target decomposition    Satellite orbit transit    Regional cloud cover at transit window    Real-time update of base image data    Multi-factor superposition
收稿日期: 2022-09-07 出版日期: 2023-09-11
ZTFLH:  TP75  
基金资助: 国家重点研发计划项目“国产中高分辨率宽波段多光谱卫星数据集构建和高效国际化服务”(2019YFE0127000);吉林省重点研发项目“多星联合大区域覆盖成像关键技术研究”(20210201015GX)
通讯作者: 李峰     E-mail: mengxq0617@163.com;lifeng@jl1.cn
作者简介: 孟祥强(1993-),男,河南濮阳人,硕士,主要从事卫星任务规划、轨道预报方面研究。E?mail: mengxq0617@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孟祥强
李峰
钟兴
衣晓宾
魏松岩

引用本文:

孟祥强,李峰,钟兴,衣晓宾,魏松岩. 基于多要素叠加的大区域遥感拍摄分解研究[J]. 遥感技术与应用, 2023, 38(4): 767-775.

Xiangqiang MENG,Feng LI,Xing ZHONG,Xiaobin YI,Songyan WEI. Study on Decomposition of Large Area based on Multi-factor Superposition for Remote Sensing Photography. Remote Sensing Technology and Application, 2023, 38(4): 767-775.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.4.0767        http://www.rsta.ac.cn/CN/Y2023/V38/I4/767

参数类型参数值
谱段与空间分辨率

主要地物谱段:B0~B6,5 m

次要地物谱段:B7~B12,10 m

大气相关谱段:B13~B19,20 m

短波红外谱段:SW1~SW4,100 m

中波红外谱段:MW1,100 m

长波红外谱段:LW1,150 m

幅宽

B0~B19:110 km

SW1~SW4:64 km

MW1:64 km

LW1:180 km

轨道类型太阳同步轨道
轨道高度528 km
降交点地方时12:00 am
表1  吉林一号光谱01/02星参数
图1  目标区域划分
图2  卫星过境可拍摄范围
图3  卫星与地面点几何关系
图4  云量分档可视化
图5  大区域动态分解
期号数据时相

有效覆盖面积

/万km2

区域有效覆盖比例
第一期2020.1.1~2021.6.273 306.0891.04%
第二期2021.6.1~2022.3.313 328.6991.66%
表2  目标区域数据有效覆盖情况
期号

总拍摄

面积/万km2

有效拍摄面积

/万km2

数据有效率
第一期23 667.1010 730.1745.3%
第二期16 947.7210 042.0259.3%
表 3  目标区域数据获取有效率
图6  实验区域预分解条带
条带过境卫星窗口时间

时长

/s

拍摄面积

/万km2

覆盖面积

/万km2

102星10/26 12:16:01482.320.85
202星10/27 12:03:20633.352.00
301星10/30 12:09:58643.612.30
402星10/28 11:50:46683.982.83
501星10/31 11:57:36865.223.95
601星11/1 11:44:54764.393.03
702星10/29 11:38:11663.762.35
801星11/2 11:32:01512.631.40
901星10/26 11:26:46461.370.38
表4  预分解条带详细信息
条带云量小于20%的网格面积占比/%
10/2610/2710/2810/2910/3010/3111/111/2
183100100135110018
24968100135310033
3249810021329452
41093100102603573
568410022301629
698299573912014
71470100745115053
838831001002940037
949979699842062
表 5  条带云量
过境窗口时间

拍摄

位置

有效率

有效拍摄面积

/万km2

有效覆盖面积

/万km2

总计13.127.69
110/26 11:26:46条带949%0.670.19
210/26 12:16:01条带183%1.920.71
310/27 12:03:20条带268%2.281.36
410/28 11:50:46条带4100%3.982.83
510/29 11:38:11条带774 %2.781.74
610/30 12:09:58条带313%0.470.30
710/31 11:57:36条带51%0.050.04
811/1 11:44:54条带60%0.000.00
911/2 11:32:01条带837%0.970.52
表 6  预分解方法仿真结果
过境窗口时间

拍摄

位置

有效率

有效拍摄面积

/万km2

有效覆盖面积

/万km2

总计16.749.92
110/26 11:26:46条带949%0.670.19
210/26 12:16:01条带183%1.920.71
310/27 12:03:20条带398%3.542.25
410/28 11:50:46条带4100%3.982.83
510/29 11:38:11条带8100%2.631.4
610/30 12:09:58条带235%1.170.7
710/31 11:57:36条带612%0.530.36
811/1 11:44:54条带56%0.310.24
911/2 11:32:01条带753%1.991.24
表 7  方法仿真结果
1 ZHANG Zhengqiang, GUO Jianen, RUAN Qiming. An algorithm to mission planning problem of polygon target remote sensing[J]. Radio Engineering,2009,39(9):40-43.
1 张正强,郭建恩,阮启明. 面向区域目标的遥感卫星任务规划算法[J]. 无线电工程,2009,39(9):40-43.
2 BAI Baocun, HE Renjie, LI Jufang, et al. Remote sensing satellites observing scheduling toward SPOT and polygon targets[J]. Journal of National University of Defense Technology, 2009, 31(2): 59-63.
2 白保存,贺仁杰,李菊芳,等. 面向点及区域目标的遥感卫星任务调度[J]. 国防科技大学学报,2009, 31(2): 59-63.
3 CHEN Y X, XU M Z, SHEN X, et al. A Multi-objective modeling method of multi-satellite imaging task planning for large regional mapping[J].Remote Sensing,2020,12(3):344. DOI: 10.3390/rs12030344
doi: 10.3390/rs12030344
4 WALTON J. Models for the management of satellite-based sensors[D]. Boston: Massachusetts Institute of Technology, 1993.
5 BAI Guoqing, BAI Baocun, XU Yifan, et al. Dynamic segmenting method of multi-satellites cooperative observation for polygon[J]. Science of Surveying and Mapping, 2010, 35(6): 32-34.
5 白国庆,白保存,徐一帆,等. 多星协同对区域目标观测的动态划分方法[J]. 测绘科学,2010, 35(6): 32-34.
6 PENG Pan, SONG Zhiming, NI Tao.Application of improved net-point method to solving area coverage problem[J]. Chinese Journal of Engineering Geophysics,2019,16(3):395-401.
6 彭攀,宋志明,倪涛. 改进的网格点法在区域覆盖问题中的应用[J]. 工程地球物理学报,2019,16(3):395-401.
7 RUAN Qiming. Research on photo-reconnaissance satellites scheduling problem for area targets observation[D]. Changsha: National University of Defense Technology, 2006.
7 阮启明. 面向区域目标的成像侦察卫星调度问题研究[D]. 长沙:国防科技大学,2006.
8 RUAN Qiming, TAN Yuejin, LI Jufang, et al. Research on segmenting and selecting of area targets[J]. Science of Surveying and Mapping, 2006, 31(1): 98-100.
8 阮启明,谭跃进,李菊芳,等. 对地观测卫星的区域目标分割与优选问题研究[J]. 测绘科学,2006, 31(1): 98-100.
9 YAO Jingyu. Research on multiple satellite scheduling method oriented to regional target observation[D]. Hefei: Hefei University of Technology, 2020.
9 姚靖宇. 面向区域目标观测的多星调度方法研究[D]. 合肥:合肥工业大学,2020.
10 ZHONG Xing, AN Yuan, WANG Dong, et al. Construction of Jilin-1 commercial space remote sensing service system[J]. Satellite Application, 2020(3): 8-17.
10 钟兴,安源,王栋,等. 吉林一号商业航天遥感服务体系建设[J]. 卫星应用,2020(3): 8-17.
11 LIU Weidong. Scientific understanding of the Belt and Road initiative of China and related research themes[J]. Progress in Geography, 2015, 34(5): 538-544.
11 刘卫东. “一带一路”战略的科学内涵与科学问题[J]. 地理科学进展,2015, 34(5): 538-544.
12 WANG Haiming, FAN Weiwei, HAN Lin, et al. Bibliometric evaluation of the development trend of space earth science in the countries along the Belt and Road[J]. Remote Sensing Technology and Application, 2019, 34(6): 1332-1342.
12 王海名,范唯唯,韩淋,等. “一带一路”沿线国家空间地球科学发展态势评估[J]. 遥感技术与应用,2019, 34(6): 1332-1342.
13 LIANG Ji, WANG Jian, ZHU Shijie, et al. Comparison of snow cover area acquisition from multi-scaling satellites[J]. Remote Sensing Technology and Application, 2009, 24(5): 567-575.
13 梁继,王建,朱仕杰,等. 多尺度卫星雪盖面积获取的对比研究[J]. 遥感技术与应用,2009, 24(5): 567-575.
14 BAI Shuying, SHI Jianqiao, SHEN Weishou, et al. Spatial and temporal variations of snow and influencing factors in Tibet Plateau based on remote sensing[J]. Remote Sensing Technology and Application, 2014, 29(6): 954-962.
14 白淑英,史建桥,沈渭寿,等. 卫星遥感西藏高原积雪时空变化及影响因子分析[J]. 遥感技术与应用,2014, 29(6): 954-962.
15 LIU Lin, TANG Jingshi. Satellite Orbit Theory and Applications[M]. Beijing: Publishing House of Electronics Industry, 2015.
15 刘林,汤靖师. 卫星轨道理论与应用[M]. 北京:电子工业出版社,2015.
16 LIU Lin. Orbital Mechanics of Artificial Earth Satellites [M]. Beijing: Higher Education Press, 1922.
16 刘林. 人造地球卫星轨道力学[M]. 北京:高等教育出版社,1992.
17 MENG Xiangqiang. Research and application of satellite orbit prediction method based on osculating kepler element[D]. Beijing: University of Chinese Academy of Sciences, 2017.
17 孟祥强. 基于瞬时根数的卫星轨道预报计算方法研究及应用[D]. 北京:中国科学院大学,2017.
18 Zhibo E, LI Junfeng. Fast simulation algorithm for area target visibility using remote sensing satellites[J].Journal of Tsinghua University (Science and Technology),2019,59(9):699-704.
18 鄂智博,李俊峰. 遥感卫星对区域目标可见性的快速计算方法[J]. 清华大学学报(自然科学版),2019, 59(9): 699-704.
19 YANG Jihong, HUANG Peng, MA Guangbin, et al. Application of history cloud data in regional remote sensing satellite data acquisition model[J]. Remote Sensing Information, 2015, 30(1): 77-80.
19 杨冀红,黄鹏,马广彬,等. 历史云量数据在遥感卫星区域化采集模型中的应用研究[J]. 遥感信息,2015, 30(1): 77-80.
[1] 庞若男,梁艾琳,李欣语,卢鑫洁. 基于OCO-2/3卫星的高时空分辨率XCO2数据插值算法研究[J]. 遥感技术与应用, 2023, 38(3): 614-623.
[2] 王卫东,权文婷,王钊,周辉. 基于TensorFlow实现FY-3D MERSI数据GPU并行快速几何校正[J]. 遥感技术与应用, 2023, 38(3): 671-679.
[3] 杜懿,林泽群,庄胜杰,陈润庭,王大刚. GPM卫星降水产品在长江流域的空间降尺度研究[J]. 遥感技术与应用, 2023, 38(3): 697-707.
[4] 黄仁杰,陈建军,林星辰,尤号田,韩小文. GEOV3和GLASS植被覆盖度产品在中国西南地区时空差异及其影响因子分析[J]. 遥感技术与应用, 2023, 38(3): 708-717.
[5] 许章华,张艺伟,李增禄,项颂阳,张琦,李一帆,周鑫,俞辉,沈婉玲. 改进的“基于片层—面向类”竹林信息遥感提取算法及其应用[J]. 遥感技术与应用, 2023, 38(2): 393-404.
[6] 张德军,祝好,杨世琦,叶勤玉,何泽能,张鑫钰. 基于地理加权回归模型遥感近地表气温估算[J]. 遥感技术与应用, 2023, 38(2): 508-517.
[7] 张腾,游冬琴,闻建光,唐勇. 二向反射遥感反演最优角度采样方法研究[J]. 遥感技术与应用, 2023, 38(1): 66-77.
[8] 刘力铖,付东洋,邹巨洪,徐广珺,王焕,张相泽. 自主HY-2B卫星北极地区风场及有效波高产品交叉验证分析[J]. 遥感技术与应用, 2023, 38(1): 227-238.
[9] 李璐,张风丽,邵芸,魏秋方,黄绮琪,焦雅楠. 基于滑动窗口的高分辨率SAR图像点目标积分响应能量计算方法研究[J]. 遥感技术与应用, 2023, 38(1): 182-189.
[10] 赵会芹,于博,陈方,王雷. 基于高分辨率卫星遥感影像滑坡提取方法研究现状[J]. 遥感技术与应用, 2023, 38(1): 108-115.
[11] 宋佳,徐慧窈,高少华,马晨燕,诸云强. 轻量化卷积神经网络遥感影像建筑物提取模型[J]. 遥感技术与应用, 2023, 38(1): 190-199.
[12] 张宇卓,李志伟,沈焕锋,彭小元. 激光雷达数据辅助的FY-3D影像阈值自适应云检测方法[J]. 遥感技术与应用, 2022, 37(5): 1109-1118.
[13] 杜鑫,钟若飞,李清扬,杨灿坤. 遥感图像星上智能处理地面仿真模拟系统设计与实现[J]. 遥感技术与应用, 2022, 37(5): 1198-1208.
[14] 石育青,梁继,李云星,孟赛颖,石倩. 林地山区滑坡遥感的最优融合方法及应用[J]. 遥感技术与应用, 2022, 37(5): 1248-1258.
[15] 孙培宇,柯樱海,钟若飞,赵世湖,刘瑶. 资源一号02D可见近红外和高光谱影像辐射质量评价[J]. 遥感技术与应用, 2022, 37(4): 938-952.