Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (4): 803-815    DOI: 10.11873/j.issn.1004-0323.2023.4.0803
宽波段多光谱数据立方专栏     
基于多个稳定目标的吉林一号光谱02卫星多光谱成像仪的在轨绝对辐射定标
杨松(),黄帅,白杨(),贾益,巴倩倩,田世强,钟兴
长光卫星技术股份有限公司,吉林 长春 130000
On-orbit Absolute Radiometric Calibration for the Multi-Spectral Imager of Jilin-1/GP02 based on Multiple Stable Targets
Song YANG(),Shuai HUANG,Yang BAI(),Yi JIA,Qianqian BA,Shiqiang TIAN,Xing ZHONG
Chang Guang Satellite Technology Company Limited,Changchun 130000,China
 全文: PDF(3543 KB)   HTML
摘要:

卫星在轨后精准的绝对辐射定标是对其观测数据进行定量化应用的基础。与传统的场地定标法、交叉定标法相比,基于稳定场景目标的定标方法具有成本低、频次高、可实现历史数据定标等优点。使用中分辨率成像光谱仪(MODIS)的MCD19A1产品、MCD43A1产品和MOD03(MYD03)产品模拟出MODIS band8在光谱02卫星观测条件下的方向反射率,再结合MCD43A1产品中MODIS band1~band5的方向反射率、MCD19A2产品中的气溶胶参数、水汽参数以及MOD07(MYD07)产品中的臭氧参数,对2021年10月光谱02卫星多光谱成像仪对多个稳定目标成像的入瞳辐亮度进行辐射传输模拟,实现对其在轨绝对辐射定标。对该定标系数的真实性检验结果表明:与发射前定标系数相比,基于重新标定系数进行大气校正的结果与哨兵2号反射率产品的差异明显减小;重新标定的观测辐亮度与包头地基自动辐射定标数据的平均相对差异为3.18%,说明定标结果具有较高的精度。研究结果可以为使用稳定目标对中高空间分辨率光学遥感卫星在轨绝对辐射定标提供方法支撑。

关键词: 在轨绝对辐射定标吉林一号多光谱大气校正    
Abstract:

The precise absolute radiometric calibration of satellite on orbit is the basis for quantitative application of its observation data. Compared with the traditional site calibration method, the on orbit calibration method based on stable targets has the advantages of low cost, high frequency and historical data calibration. The MCD19A1 product, MCD43A1 product and MOD03 (MYD03) product of the Moderate-resolution Imaging Spectroradiometer (MODIS) are applied to simulate the directional reflectance of MODIS band8 under the observation conditions of GP02 satellite. Then combined with the directional reflectance of MODIS band1~band5 in MCD43A1 products, aerosol parameters and water vapor parameters in MCD19A2 products and ozone parameters in MOD07 (MYD07) products, the radiation transfer process of the incoming pupil radiance of multiple stable targets imaged by Multi-Spectral Imager of GP02 satellite in October 2021 was simulated to achieve the absolute radiometric calibration in orbit. The validation results of these calibration coefficients show that a smaller difference between GP02’s atmospheric correction results and Sentinel-2 reflectance products is performed when the re-calibration coefficients rather than pre-launch coefficients are applied; the average relative difference between GP02’s measured radiance of all bands after re-calibration and the automatic radiometric calibration data of Baotou is 3.18%, indicating the high accuracy of the calibration results. The research results can provide a methodological support for the on-orbit absolute radiometric calibration of medium or high spatial resolution optical remote sensing satellites using stable targets.

Key words: On-orbit radiometric calibration    Jilin-1    Multispectral    Atmosphere correction
收稿日期: 2022-05-12 出版日期: 2023-09-11
ZTFLH:  TP75  
基金资助: 国家重点研发计划“国产中高分辨率宽波段多光谱卫星数据集构建和高效国际化服务”(2019YFE0127000)
通讯作者: 白杨     E-mail: 1055174356@qq.com;baiy776@163.com
作者简介: 杨 松(1994-),男,吉林靖宇人,工程师,主要从事光学遥感卫星辐射定标与辐射预处理研究。E?mail:1055174356@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨松
黄帅
白杨
贾益
巴倩倩
田世强
钟兴

引用本文:

杨松,黄帅,白杨,贾益,巴倩倩,田世强,钟兴. 基于多个稳定目标的吉林一号光谱02卫星多光谱成像仪的在轨绝对辐射定标[J]. 遥感技术与应用, 2023, 38(4): 803-815.

Song YANG,Shuai HUANG,Yang BAI,Yi JIA,Qianqian BA,Shiqiang TIAN,Xing ZHONG. On-orbit Absolute Radiometric Calibration for the Multi-Spectral Imager of Jilin-1/GP02 based on Multiple Stable Targets. Remote Sensing Technology and Application, 2023, 38(4): 803-815.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.4.0803        http://www.rsta.ac.cn/CN/Y2023/V38/I4/803

场地名称纬度/ °经度/ °
Arabia118.8846.76
Arabia220.1350.96
Algeria 330.327.66
Algeria 531.022.23
Libya 124.4213.35
Libya 428.5523.39
Mali19.12-4.85
Mauritania 119.40-9.30
Mauritania 220.85-8.78
Niger221.3710.59
Sonora31.95-114.1
Sudan121.7428.22
表1  文章使用的稳定场地位置列表
波段中心波长/ nm波段范围/ nm空间分辨率/ m
B0624.08450~8005
B1415.21403~4235
B2444.69433~4535
B3483.36450~5155
B4559.61525~6005
B5656.75630~6805
B6836.14785~9005
B7487.41485~49510
B8619.41615~62510
B9660.75650~68010
B10705.46699~71910
B11742.51733~74810
B12784.49773~79310
B13863.44855~87520
B14664.46660~67020
B15681.94678~68520
B16754.51750~75820
B17758.87759~76320
B18941.43935~95520
B191 013.971 000~1 04020
表2  吉林一号光谱02星多光谱成像仪技术指标
图1  各个稳定目标的方向反射率
场地名称成像日期

观测

天顶角

550 nm

气溶胶

光学

厚度

水汽

含量

/cm

臭氧

密度

/多布森

MODIS数据与光谱02

成像间隔/min

Algeria32021-10-24590.2001.91627176
Algeria32021-10-25820.1051.37626432
Algeria32021-10-07620.2372.05926238
Algeria32021-10-08820.0521.58525989
Algeria52021-10-31700.0501.59224770
Algeria52021-10-05620.2641.13825327
Libya12021-10-01610.2101.89126895
Libya12021-10-10730.0881.10125695
Libya12021-10-28750.5631.894-95
Libya42021-10-14790.3732.01926080
Libya42021-10-22780.5342.37725664
Libya42021-10-05800.2261.7825821
Mali2021-10-22710.5481.8442561
Mali2021-10-04770.4781.60923967
Mauritania12021-10-11780.2841.26823554
Mauritania12021-10-20800.1801.5225854
Mauritania22021-10-02640.1651.3925155
Niger22021-10-27800.4421.326338
Niger22021-10-09660.2040.78225943
Sonora2021-10-07650.0673.04429399
Sudan12021-10-24700.3331.50224670
Sudan12021-10-25740.3291.8520.26269
表3  各场地的成像几何参数和大气参数
图2  光谱02卫星对各稳定场地成像DN值与模拟辐亮度结果
波段

在轨定标

增益系数

Gainonorbit

发射前定标

增益系数

Gainlab

相对

差异

B00.060 2080.056 2786.98%
B10.797 4960.618 87828.86%
B20.656 2550.460 65042.46%
B30.149 1110.128 93415.65%
B40.099 6110.084 93017.29%
B50.108 8810.101 7926.96%
B60.071 4520.061 21016.73%
B70.124 8880.109 08714.49%
B80.067 7390.062 6958.05%
B90.026 5960.024 4518.77%
B100.030 5250.029 9541.91%
B110.040 7130.039 3503.46%
B120.035 6970.033 3017.20%
B130.007 8810.006 60019.40%
B140.008 6390.008 1296.28%
B150.010 1730.009 7104.77%
B160.014 4020.013 7194.98%
B170.023 0700.021 8645.52%
B180.015 9550.013 41418.94%
B190.033 1780.025 45230.35%
表4  重新标定的定标系数与发射前系数对比
波段

多点法标定观测辐亮度

/Wm-2μm-1sr-1

单点法标定观测辐亮度

/Wm-2μm-1sr-1

场地定标辐亮度

/Wm-2μm-1sr-1

多点法

相对差异

单点法

相对差异

B064.6466.6067.90-4.80%-1.93%
B147.7551.8352.22-8.55%-0.75%
B260.3558.4858.702.82%-0.38%
B366.3563.9564.562.77%-0.94%
B465.7868.8768.33-3.73%0.79%
B574.0075.9874.59-0.79%1.87%
B660.1662.0458.073.60%6.84%
B767.1066.3363.615.48%4.27%
B870.2973.3574.86-6.11%-2.02%
B973.9575.8474.87-1.22%1.29%
B1070.0371.9471.96-2.68%-0.02%
B1167.2969.9771.53-5.93%-2.17%
B1263.8066.7767.20-5.06%-0.64%
B1355.6158.4254.951.21%6.31%
B1474.7777.8676.06-1.69%2.37%
B1572.7176.1873.92-1.63%3.06%
B1665.4668.9965.72-0.39%4.97%
B1742.5947.9852.90-19.48%-9.31%
B1823.6228.2531.19-24.27%-9.43%
B1941.1346.7548.82-15.76%-4.25%
表5  重新标定的观测辐亮度与包头场地标定辐亮度对比
图3  各大气校正均匀场地反射率测试结果
光谱02波段哨兵2号波段

相对差异

(空地)

相对差异

(水泥路)

相对差异

(湖水)

B3(483.36 nm)B02(490 nm)0.68%1.58%5.45%
B4(559.61 nm)B03(560 nm)2.26%4.37%1.27%
B5(656.75 nm)B04(665 nm)0.91%3.40%9.53%
B10(705.46 nm)B05(704 nm)-5.51%-3.75%-0.99%
B11(742.51 nm)B06(740 nm)-0.67%-0.56%99.59%
B12(784.49 nm)B07(783 nm)-0.30%-2.74%98.23%
B6(836.14 nm)B08(835 nm)3.57%-1.32%70.22%
B13(863.44 nm)B8A(865 nm)5.34%4.43%185.27%
表6  光谱02卫星重新标定的反演反射率与哨兵2号反射率产品对比
1 GAO Hailiang, GU Xingfa, YU Tao, et al. The research overview on visible and near-infrared channels radiometric calibration of Space-borne Optical Remote Sensors[J]. Remote Sensing Information, 2010(4):117-128.
1 高海亮, 顾行发, 余涛, 等. 星载光学遥感器可见近红外通道辐射定标研究进展[J]. 遥感信息, 2010(4):117-128.
2 ZHANG Yuhuan. Cross-calibration of HJ1-CCD[D]. Qingdao: Shandong University of Science and Technology, 2012.
2 张玉环. HJ1-CCD交叉辐射定标[D]. 青岛:山东科技大学, 2012.
3 MA Lingling, WANG Ning, GAO Caixia, et al. On-orbit absolute radiometric calibration for optical remote sensing satellites: Progress and trends[J]. National Remote Sensing Bulletin, 2023, 27(5): 1061-1087.
3 马灵玲, 王宁, 高彩霞, 等.光学遥感卫星在轨绝对辐射定标:进展与趋势[J]. 遥感学报,2023, 27(5): 1061-1087.
4 WANG Fugang, ZHANG Wei, WANG Hongyuan, et al. Influence of motion status on multispectral optical characteristics of satellites[J]. Acta Optica Sinica, 2012, 32(10): 21-28.
4 王付刚, 张伟, 汪洪源, 等. 运动状态对卫星多谱段光学特性的影响分析[J]. 光学学报, 2012, 32(10): 21-28.
5 DINGUIRARD M, SLATER P N. Calibration of space-multispectral imaging sensors-the quantitative approach[J]. Remote Sensing of Environment, 1999, 68(3):194-205. DOI: 10.1016/S0034-4257(98) 00111-4
doi: 10.1016/S0034-4257(98) 00111-4
6 JI Zhongying, XIANG Libin, WANG Zhonghou, et al. Research of calibration technology of interference hyperspectral imager on secondary planet[J]. Remote Sensing Technology and Application, 2004, 19(4):280-283.
6 计忠瑛, 相里斌, 王忠厚,等. 干涉型超光谱成像仪的星上定标技术研究[J]. 遥感技术与应用, 2004, 19(4):280-283.
7 WANG Wei, ZHANG Liming, SI Xiaolong, et al. On-orbit degradation monitoring technology for solar diffuser reflectance[J]. Acta Optica Sinica, 2019, 39(7):373-380.
7 汪伟, 张黎明, 司孝龙, 等. 太阳漫射板反射率在轨衰退监测技术研究[J]. 光学学报, 2019, 39(7):373-380.
8 THOME K, GELLMAN D, PARADA R, et al. In-flight radiometric calibration of Landsat-5 Thematic Mapper from 1984 to present[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1993, 1938(14):126-130. DOI: 10.1117/12.161537
doi: 10.1117/12.161537
9 XU Lei, MA Lingling, HU Jian, et al. Cross-calibration of HJ-1B/CCD1 against Terra/MODIS[J]. Remote Sensing Information, 2011, 28(2):26-31.
9 徐磊, 马灵玲, 胡坚, 等. 基于Terra/MODIS数据的HJ-1B/CCD1交叉定标方法研究[J]. 遥感信息, 2011, 28(2):26-31.
10 GAO H, GU X, YU T,et al. Cross-calibration of GF-1 PMS sensor with Landsat-8 OLI and Terra MODIS[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(8):4847-4854. DOI: 10.1109/ TGRS.2016.2552242
doi: 10.1109/ TGRS.2016.2552242
11 ZHAO Y, MA L, LI C, et al. Radiometric Cross-calibration of Landsat-8 OLI and GF-1/PMS sensors using an instrumented sand site[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(10): 3822-3829. DOI: 10.1109/JSTARS. 2018.2862638
doi: 10.1109/JSTARS. 2018.2862638
12 FRANK W. Degradation rates of the AVHRR visible channel for the NOAA 6, 7, and 9 spacecraft[J]. Journal of Atmospheric and Oceanic Technology, 1990, 7(3):411-423. DOI:10.1175/1520 -0426(1990)0072.0.CO;2
doi: 10.1175/1520 -0426(1990)0072.0.CO;2
13 XIE Yujuan. The in-orbit radiometric calibration research for the HJ-1 CCD cameras based on desert scene[D]. Jiaozuo:Henan Polytechnic University, 2011.
13 谢玉娟. 基于沙漠场景的HJ-1 CCD相机在轨辐射定标研究[D]. 焦作:河南理工大学, 2011.
14 SUN L, HU X, GUO M, et al. Multisite calibration tracking for FY-3A MERSI solar bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(12):4929-4942.
15 WANG Ling, HU Xiuqing, CHEN Lin. FY-3C/MERSI calibration for solar band using multi-reflectance stable targets[J]. Optics and Precision Engineering, 2015, 23(7):1911-1920.
15 王玲, 胡秀清, 陈林.基于多种亮度稳定目标的FY-3C/中分辨率光谱成像仪的反射太阳波段辐射定标[J]. 光学精密工程, 2015, 23(7):1911-1920.
16 COSNEFROY H, LEROY M, BRIOTTET X. Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors[J]. Remote Sensing of Environment, 1996, 58(1):101-114. DOI: 10.1016/0034-4257(95)00211-1
doi: 10.1016/0034-4257(95)00211-1
17 TEILLET P M, BUTLER J J, XIONG J, et al. Prime candidate earth targets for the post-launch radiometric calibration of space-based optical imaging instruments[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2007, 6677:66770S-66770S-12. DOI: 10.1117/12.733156
doi: 10.1117/12.733156
18 SLATER P N. Reflectance and radiance-based methods for the inflight absolute calibration of multispectral sensors[J]. Remote Sensing of Environment, 2015, 22(1):11-37. DOI: 10.1016/0034-4257(87)90026-5
doi: 10.1016/0034-4257(87)90026-5
19 GONG Hui, TIAN Guoliang, YU Tao, et al. Radiometric calibration and validation of CCD cameras on HJ-1 satellite[J]. Remote Sensing Technology and Application, 2011, 7(5):371-393.
19 巩慧, 田国良, 余涛,等. HJ-1星CCD相机场地辐射定标与真实性检验研究[J]. 遥感技术与应用, 2011, 7(5):371-393.
20 ROUJEAN J L, LEROY M, DESCHANPS P Y. A bidirectional reflectance model of the earth's surface for the correction of remote sensing data[J]. Journal of Geophysical Research Atmospheres, 1992, 972(D18):20455-20468. DOI: 10.1029/92JD01411
doi: 10.1029/92JD01411
21 ROSS J. The radiation regime and architecture of plant stands[M]. Springer Science and Business Media, 1981. DOI: 10.1007/978-94-009-8647-3
doi: 10.1007/978-94-009-8647-3
22 LI X, STRAHLER A H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing[J]. IEEE transactions on Geoscience and Remote Sensing,1992,30(2):276-292. DOI: 10.1109/36.134078
doi: 10.1109/36.134078
23 SCHAAF C L B, LIU J, GAO F,et al.MODIS albedo and refle-ctance anisotropy products from Aqua and Terra[J].Land Remote Sensing and Global Environmental Change:NASA’s Ear-th Observing System and the Science of ASTER and MODIS,2011,11:549-561. DOI:10.1007/978-1-4419-6749-7_24
doi: 10.1007/978-1-4419-6749-7_24
24 WANNER W, LI X, STRAHLER A H. On the derivation of Kernels for Kernel-driven models of bidirectional reflectance[J]. Journal of Geophysical Research Atmospheres, 1995, 100(D10):21077-21089. DOI: 10.1029/95JD02371
doi: 10.1029/95JD02371
25 LIANG S, STRAHLER A H, WALTHALL C. Retrieval of land surface albedo from satellite observations: A simulation study[J]. Journal of Applied meteorology,1999,38(6):712-725. DOI:10.1175/1520-0450(1999)038<0712:ROLSAF>2.0.CO;2
doi: 10.1175/1520-0450(1999)038<0712:ROLSAF>2.0.CO;2
26 VERMOTE E F, SALEOUS N Z E, JUSTICE C O. Atmospheric correction of MODIS data in the visible to middle infrared: First results[J]. Remote Sensing of Environment, 2002, 83(1-2): 97-111. DOI: 10. 1016/S0034-4257(02)00089-5
doi: 10. 1016/S0034-4257(02)00089-5
27 LYAPUSTIN A, WANG Y. MAIAC-multi-angle implementation of atmospheric correction for MODIS[C]∥ AGU Spring Meeting Abstra- cts. 2007, 2007: A51B-05.
28 PEARSON K. Notes on regression and inheritance in the case of two parents[J]. Proceedings of the Royal Society of London,1895,58(1):240-242.
29 WANG Xishi, MIN Xiangjun, WU Rong. Measurement Method Research on the Atmospheric Spectral Optical Depth[J].Remote Sensing Technology and Application,1997,12(2):9-17.
29 王喜世, 闵祥军, 吴荣, 等. 大气光谱光学厚度测量方法研究[J]. 遥感技术与应用, 1997,12(2):9-17.
30 LI C, TANG L, MA L, et al. Comprehensive calibration and validation site for information remote sensing. The international archives of photogrammetry[J]. Remote Sensing and Spatial Information Sciences, 2015, 40(7): 1233. DOI: 10.5194/isprsarchives-XL-7-W3-1233-2015
doi: 10.5194/isprsarchives-XL-7-W3-1233-2015
31 NING W, MA L, LIU Y, et al. Ground-based automated radiometric calibration system in Baotou site,China[C]∥ Image and Signal Processing for Remote Sensing XXIII,2017. DOI: 10.1117/12.2278072
doi: 10.1117/12.2278072
32 MA L, ZHAO Y, WOOLLIAMS E R, et al. Uncertainty analysis for radcalnet instrumented test sites using the Baotou sites BTCN and BSCN as examples[J]. Remote Sensing, 2020, 12(11):1696. DOI: 10.3390/rs12111696
doi: 10.3390/rs12111696
33 TANG Hongzhao, TANG Xinming, XIE Junfeng, et al. On-orbit radiometric calibration and validation of GF-7 satellite based on RadCalNet Baotou site[J]. National Remote Sensing Bulletin,2023,27(5):1194-1204.
33 唐洪钊, 唐新明, 谢俊峰, 等.基于RadCalNet包头场的高分七号卫星在轨绝对辐射定标及精度验证[J]. 遥感学报,2023,27(5):1194-1204.
34 PANG Bo, CHEN Zhiming, WANG Guozhu, et al. Ground-based Automatic radiometric calibration of land observation satellite optical sensors and cross validation analysis[J]. Remote Sensing Technology and Application, 2019, 34(1): 146-154.
34 庞博, 陈志明, 王国珠,等. 陆地卫星光学载荷地基自动辐射定标与验证分析[J]. 遥感技术与应用, 2019, 34(1):146-154.
35 MATTHEW M W, ADLER-GOLDEN S M, BERK A, et al. Atmospheric correction of spectral imagery: Evaluation of the FLAASH algorithm with AVIRIS data[C]∥ Applied Imagery Pattern Recognition Workshop, 2002. Proceedings. IEEE, 2002: 157-163.
36 HOLBEN B N, ECK T F, SLUTSKER I,et al. AERONET-A federated instrument network and data archive for aerosol characterization[J]. Remote Sensing of Environment, 1998, 66(1): 1-16.
37 WEI Haining, WANG Weizhen, HUANG Guanghui,et al. Re-trieval of aerosol optical depth based on Himawari-8[J]. Remote Sensing Technology and Application,2020,35(4):797-807.
37 韦海宁, 王维真, 黄广辉, 等. 基于 Himawari-8 的气溶胶反演研究[J]. 遥感技术与应用, 2020,35(4):797-807.
38 ÅNGSTRÖM A. The parameters of atmospheric turbidity[J]. Tellus, 1964, 16(1): 64-75. DOI: 10.1016/0038-092X(65)90225-2
doi: 10.1016/0038-092X(65)90225-2
39 ELTERMAN L. Relationships between vertical attenuation and surface meteorological range[J]. Applied optics,1970,9(8):1804-1810. DOI:10.1364/AO.9.001804
doi: 10.1364/AO.9.001804
40 MAIN-KNORN M, PFLUG B, LOUIS J, et al. Sen2Cor for sentinel-2[C]∥ Image and Signal Processing for Remote Sensing XXIII. International Society for Optics and Photonics, 2017, 10427: 1042704.
41 ZHOU G, YANG S, SATHYENDRANATH S, et al. Canopy modeling of aquatic vegetation: A geometric optical approach (AVGO)[J]. Remote Sensing of Environment, 2020, 245. DOI: 10.1016/j.rse.2020. 111829
doi: 10.1016/j.rse.2020. 111829
42 BERTHELOT B, SANTER R. Calibration test sites selection and Characterisation: Site equipment and Auxiliary data[EB/OL]..
[1] 魏松岩,孟祥强,衣晓宾,李峰,钟兴,陈思. “一带一路”区域国产中高分辨率宽波段多光谱卫星数据获取技术研究[J]. 遥感技术与应用, 2023, 38(4): 776-782.
[2] 齐文栋,李志刚,顾晓鹤. 基于波段反射率日均增量的花生干旱灾情遥感评估[J]. 遥感技术与应用, 2022, 37(3): 580-588.
[3] 吕冬梅,马玥,李华朋. 基于CNN的吉林一号卫星城市土地覆被制图潜力评估[J]. 遥感技术与应用, 2022, 37(2): 368-378.
[4] 尹芳,封凯,吴朦朦,拜得珍,王蕊,周园园,尹春涛,尹翠景,刘磊. 一种基于分段偏最小二乘模型的土壤重金属遥感反演方法[J]. 遥感技术与应用, 2021, 36(6): 1321-1328.
[5] 段金亮,张瑞,李奎,庞家泰. 一种基于噪声水平估计的扩展线性光谱分解算法[J]. 遥感技术与应用, 2021, 36(4): 820-826.
[6] 蒋嘉锐,朱文泉,乔琨,江源. 基于Sentinel-2数据的天山山地针叶林识别方法研究[J]. 遥感技术与应用, 2021, 36(4): 847-856.
[7] 刘鹤,顾玲嘉,任瑞治. 基于无人机遥感技术的森林参数获取研究进展[J]. 遥感技术与应用, 2021, 36(3): 489-501.
[8] 李佳佳,束进芳,裘增欢,符冉迪,金炜. 面向滨海湿地的全色/多光谱影像融合方法与应用分析——以杭州湾(1999~2018年)为例[J]. 遥感技术与应用, 2021, 36(3): 627-637.
[9] 尹春涛,谢文扬,王奇,刘磊,孟刚刚. 甘肃北山白峡尼山地区多源遥感岩性制图研究[J]. 遥感技术与应用, 2020, 35(5): 1146-1157.
[10] 林志垒,张贵成. 基于改进Brovey变换的ALI影像融合算法研究[J]. 遥感技术与应用, 2020, 35(4): 893-900.
[11] 程春梅,韦玉春,李渊,涂乾光. 太湖水体GF-1/WFV影像的6S逐像元大气校正[J]. 遥感技术与应用, 2020, 35(1): 141-152.
[12] 邢晓达,申茜,李俊生,张方方,庞治国,吕书强. 基于HJ-CCD的漫湾坝区河流悬浮物浓度遥感反演[J]. 遥感技术与应用, 2016, 31(4): 682-690.
[13] 李述,刘琪璟. 高程和大气模式对FLAASH模型校正结果的影响[J]. 遥感技术与应用, 2015, 30(5): 939-945.
[14] 吴岩真,闻建光,王佐成,唐勇,窦宝成. 遥感影像地形与大气校正系统设计与实现[J]. 遥感技术与应用, 2015, 30(1): 106-114.
[15] 崔艳荣,何彬彬,张瑛,李蔓. 非负矩阵分解融合高光谱和多光谱数据[J]. 遥感技术与应用, 2015, 30(1): 82-91.