Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (4): 816-826    DOI: 10.11873/j.issn.1004-0323.2023.4.0816
宽波段多光谱数据立方专栏     
基于吉林一号光谱星影像的农作物叶面积指数反演
杜一博1,2(),朱瑞飞1,2(),巩加龙1,2,王栋1,2,钟兴1,2
1.长光卫星技术股份有限公司,吉林 长春 130000
2.吉林省卫星应用重点实验室,吉林 长春 130000
Retrieval of Crop Leaf Area Index based on Jilin-1GP Image
Yibo DU1,2(),Ruifei ZHU1,2(),Jialong GONG1,2,Dong WANG1,2,Xing ZHONG1,2
1.Chang Guang Satellite Technology Company Limited,Ltd,Changchun 130000,China
2.Jilin Provincial Key Laboratory of Satellite Application,Changchun 130000,China
 全文: PDF(4802 KB)   HTML
摘要:

吉林一号光谱星的发射提高了我国对地观测能力,并且在农业定量反演方面具有较大的潜力,为了准确、有效地反演农作物关键参数,分析吉林一号光谱星影像的反演能力具有重要意义。以内蒙古乌拉特前旗、正蓝旗、科尔沁右翼前旗的农田为研究区,基于吉林一号光谱星影像,使用优化后的PROSAIL模型和曲线匹配算法,对不同物候期内的玉米和水稻叶面积指数(LAI)进行了反演,并结合实测LAI数据进行了精度验证。结果表明:优化后的PROSAIL模型其参数范围和参数步长更适用于农作物LAI反演,在保证精度的前提下精简了查找表的容量;基于特征值的曲线匹配算法在空间分布高度一致、误差绝对值均值为0.41的情况下,计算效率平均提高了41.43 %;研究区不同物候期内的玉米和水稻LAI反演精度R2为0.72~0.9,RMSE为0.32~0.49。其中,玉米开花期精度最高(R2=0.9,RMSE=0.4),玉米成熟期精度最低(R2=0.72,RMSE=0.47)。综上所述,基于吉林一号光谱星影像反演农作物LAI具有精度高、误差小的特点,研究结果可为该数据在农作物LAI精准反演方面提供科学方法和依据。

关键词: 吉林一号光谱星农作物PROSAIL模型叶面积指数    
Abstract:

The launch of the Jilin-1GP satellite has enhanced China’s Earth observation capabilities, and has great potential in agricultural quantitative inversion. To invert the key crop parameters accurately and effectively, it is of great significance to analyze the inversion capability of Jilin-1GP satellite images. The farmland of Urad Front Banner, Zhenglan Banner and Horqin Right Front Banner in Inner Mongolia were taken as the study area in this study, and based on the Jilin-1GP images, the optimized PROSAIL model and curve matching algorithm were used to invert the Leaf Area Index(LAI) of maize and rice in different phenological periods, and the accuracy was verified by combining the measured LAI data. Results showed that the parameter range and step size of the optimized PROSAIL model were more suitable for crop LAI inversion, and the capacity of the look-up table was reduced on the premise of ensuring the accuracy; The curve matching algorithm based on eigenvalues improved the computational efficiency by an average of 41.43% when the spatial distribution was highly consistent and the mean absolute value of the error was 0.41; The LAI inversion accuracies R2 of maize and rice in different phenological periods of the study area ranged from 0.72 to 0.9, and the RMSE ranged from 0.32 to 0.49. Among them, the precision of maize in the flowering stage was the highest (R2=0.9, RMSE=0.4), and the precision of maize in the maturity stage was the lowest (R2=0.72, RMSE=0.47). This study showed that the crop LAI inversion based on Jilin-1GP images had the characteristics of high precision and small error. The research results can provide scientific methods and basis for the accurate inversion of crop LAI with Jilin-1GP images.

Key words: Jilin-1GP    Crop    PROSAIL model    Leaf Area Index
收稿日期: 2022-09-03 出版日期: 2023-09-11
ZTFLH:  TP79  
基金资助: 国家重点研发计划(2019YFE0127000);吉林省遥感信息技术应用创新基地项目(20180623058TC);吉林省西部典型湿地生态系统生态承载力遥感评估与应用(20210203176SF)
通讯作者: 朱瑞飞     E-mail: 940301442@qq.com;zhuruifei1105@163.com
作者简介: 杜一博(1993-),男,黑龙江双鸭山人,硕士研究生,主要从事植被定量遥感研究。E?mail:940301442@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杜一博
朱瑞飞
巩加龙
王栋
钟兴

引用本文:

杜一博,朱瑞飞,巩加龙,王栋,钟兴. 基于吉林一号光谱星影像的农作物叶面积指数反演[J]. 遥感技术与应用, 2023, 38(4): 816-826.

Yibo DU,Ruifei ZHU,Jialong GONG,Dong WANG,Xing ZHONG. Retrieval of Crop Leaf Area Index based on Jilin-1GP Image. Remote Sensing Technology and Application, 2023, 38(4): 816-826.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.4.0816        http://www.rsta.ac.cn/CN/Y2023/V38/I4/816

图1  研究区及样点地理位置示意图
地点作物类型影像时间实测时间
乌拉特前旗玉米7月18日~7月20日、8月19日7月15日~7月23日、8月20日~8月24日
正蓝旗玉米9月11日9月9日~9月11日
科尔沁右翼前旗玉米、水稻9月11日、9月17日9月13日~9月17日
表1  影像获取时间与野外测量时间
图2  样方及实测点位分布图
参数符号参数名称单位
Ns叶片结构参数
Cab叶绿素ab含量μg/cm2
Car类胡萝卜素含量μg/cm2
Cbrown褐色素含量μg/cm2
Cw等效水厚度cm
Cm干物质含量g/cm2
LAI叶面积指数
ALA平均叶倾角°
Psoil土壤亮度参数
Hotspot热点参数
tts太阳天顶角°
tto观测天顶角°
psi相对方位角°
表2  PROSAIL模型输入参数
图3  类胡萝卜素与叶绿素ab含量关系
图4  PROSAIL模型参数敏感性分析
参数符号参数名称参数值或范围参数步长单位
Ns叶片结构参数1~2.50.1
Cab叶绿素ab含量5~8520μg/cm2
Car类胡萝卜素含量由拟合公式代替μg/cm2
Cbrown褐色素含量0.2
Cw等效水厚度0.001~0.0510.025cm
Cm干物质含量0.001~0.0210.005g/cm2
LAI叶面积指数0~7.250.29
ALA平均叶倾角实测获取°
Psoil土壤亮度参数玉米0.4、水稻0.1
Hotspot热点参数实测获取
tts太阳天顶角影像头文件获取°
tto观测天顶角影像头文件获取°
psi相对方位角影像头文件获取°
表3  PROSAIL模型输入参数范围及步长
图5  匹配算法优化前后反演结果及差值占比绝对值影像
图6  乌拉特前旗玉米LAI反演精度
图7  正蓝旗玉米LAI反演精度
图8  科尔沁右翼前旗玉米和水稻LAI反演精度
1 DUAN S B, LI Z L, WU H,et al. Inversion of the PROSAIL model to estimate Leaf Area Index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data[J]. International Journal of Applied Earth Observations and Geoinformation,2014,26:12-20.
2 CHENG Xue, HE Bingyan, HUANG Yaohuan,et al. Estimation of maize Leaf Area Index based on UAV hyperspectral data[J]. Remote Sensing Technology and Application,2019,34(4):775-784.
2 程雪,贺炳彦,黄耀欢,等. 基于无人机高光谱数据的玉米叶面积指数估算[J]. 遥感技术与应用,2019,34(4):775-784.
3 YANG Bangjie, PEI Zhiyuan. Definition and remote sensing monitoring of crop growth[J].Journal of Agricultural Engineering,1999,15(3):214-218.
3 杨邦杰,裴志远. 农作物长势的定义与遥感监测[J].农业工程学报,1999,15(3):214-218.
4 WUMUTI Aishanjiang, MAIMAITI Shawuti, CHEN Shuisen,et al. Leaf Area Index inversion of winter wheat based on GF-1/2 satellite data[J]. Journal of Crops,2020,46(5):787-797.
4 吾木提·艾山江,买买提·沙吾提,陈水森,等. 基于GF-1/2卫星数据的冬小麦叶面积指数反演[J]. 作物学报,2020,46(5):787-797.
5 DONG Zhen, YANG Guijun, SUN Lin,et al. Application of multi-layer discrete anisotropic radiative transfer model in inversion of maize Leaf Area Index vertical distribution[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2021,47(4):439-450.
5 董震,杨贵军,孙林,等. 多层离散各向异性辐射传输模型在玉米叶面积指数垂直分布反演中的应用[J]. 浙江大学学报(农业与生命科学版),2021,47(4):439-450.
6 ROUSE J W, HAAS R H, SCHELL J A,et al. Monitoring vegetation systems in the Great Plains with ERTS[C]∥ Proceedings of the Third Earth Resources Technology Satellite-1 Symposium,1974,1:309-317.
7 JORDAN C F. Derivation of Leaf‐Area Index from quality of light on the forest floor[J]. Ecology,1969,50(4):663-666.
8 HABOUDANE D, MILLER J R, PATTEY E,et al. Hyperspectral vegetation indices and Novel Algorithms for Predicting Green LAI of crop canopies:Modeling and Validation in the Context of Precision Agriculture[J]. Remote Sensing of Environment,2004,90(3):337-352.
9 SU Wei, HOU Ning, LI Qi,et al. Inversion of maize canopy Leaf Area Index based on Sentinel-2 remote sensing image[J]. Agricultural Machinery Journal,2018,49(1):151-156.
9 苏伟,侯宁,李琪,等. 基于Sentinel-2遥感影像的玉米冠层叶面积指数反演[J]. 农业机械学报,2018,49(1):151-156.
10 XU Xiaoyu, SUN Hua, WANG Guangxing,et al. Remote sensing inversion of Leaf Area Index in Kangbao County based on GF-1 and Landsat-8[J]. Journal of Central South University of Forestry and Technology,2018,38(1):43-48.
10 徐晓雨, 孙华,王广兴,等. 基于GF-1与Landsat-8的康保县叶面积指数遥感反演研究[J]. 中南林业科技大学学报,2018,38(1):43-48.
11 MASAYASU M, KOKI H. Empirical regression models for estimating multiyear Leaf Area Index of rice from several vegetation indices at the field scale[J]. Remote Sensing,2014,6(6):4764-4779.
12 WU Qiong, BAO Yuhai, ZHANG Hongbin,et al. Accuracy validation of MODIS/LAI products based on PROSAIL model and HJ-1A-CCD2 Images[J]. Grass Science,2014,31(3):399-407.
12 吴琼,包玉海,张宏斌,等. 基于PROSAIL模型及HJ-1A-CCD2影像的MODIS/LAI产品精度验证[J]. 草业科学,2014,31(3):399-407.
13 ZHANG Mingzheng, SU Wei, ZHU Dehai. Research on inversion method of maize canopy Leaf Area Index and leaf Chlorophyll content based on PROSAIL model[J]. Geography and Geographic Information Science,2019,35(5):28-33.
13 张明政,苏伟,朱德海. 基于PROSAIL模型的玉米冠层叶面积指数及叶片叶绿素含量反演方法研究[J]. 地理与地理信息科学,2019,35(5):28-33.
14 HUANG Chudi, LU Lei, LIU Yong,et al. Leaf Area Index inversion of maize field based on high resolution remote sensing image[J]. Zhejiang Journal of Agriculture,2018,30(2):339-349.
14 黄楚荻,鲁蕾,刘勇,等. 基于高分辨率遥感影像的玉米田叶面积指数反演[J]. 浙江农业学报,2018,30(2):339-349.
15 YANG Guijun, ZHAO Chunjiang, XING Zhurong,et al. LAI inversion of spring wheat based on PROBA/CHRIS remote sensing data and PROSAIL model[J]. Journal of Agricultural Engineering,2011,27(10):88-94.
15 杨贵军,赵春江,邢著荣,等. 基于PROBA/CHRIS遥感数据和PROSAIL模型的春小麦LAI反演[J]. 农业工程学报,2011,27(10):88-94.
16 HE Xiaohui, FENG Kun, GUO Hengliang,et al. Comparison of Leaf Area Index inversion of different soybean populations based on PROSAIL model and BP neural network model optimized by genetic algorithm[J]. Journal of Henan Agricultural University,2021, 55(4):698-706.
16 赫晓慧,冯坤,郭恒亮,等.基于PROSAIL模型和遗传算法优化的BP神经网络模型的不同大豆种群叶面积指数反演比较[J]. 河南农业大学学报,2021,55(4):698-706.
17 FANG H L, LIANG S L, KUUSK A. Retrieving Leaf Area Index using a genetic algorithm with a canopy radiative transfer model[J]. Remote Sensing of Environment,2003,85(3):257-270.
18 LIU Zhenbo, ZOU Xian, GE Yunjian,et al. Rice LAI inversion using a random forest algorithm based on GF-1 WFV images[J]. Remote Sensing Technology and Application,2018,33(3):458-464.
18 刘振波,邹娴,葛云健,等. 基于高分一号WFV影像的随机森林算法反演水稻LAI[J]. 遥感技术与应用,2018,33(3):458-464.
19 LIANG Shunlin, CHENG Jie, JIA Kun,et al. Recent progress in land surface quantitative remote sensing[J]. Journal of Remote Sensing,2016,20(5):875-898.
19 梁顺林,程洁,贾坤,等. 陆表定量遥感反演方法的发展新动态[J]. 遥感学报,2016,20(5):875-898.
20 ZHU Z C, BI J, PAN Y Z,et al. Global data sets of vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011[J]. Remote Sensing,2013,5(2):927-948.
21 XIAO Z Q, LIANG S L, WANG J D,et al. Use of general regression neural networks for generating the GLASS Leaf Area Index product From Time-Series MODIS Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing,2014,52(1):209-223.
22 MA H, LIANG S L. Development of the GLASS 250m Leaf Area Index product (version 6) from MODIS data using the bidirectional LSTM deep learning model[J]. Remote Sensing of Environment,2022,273:112985.
23 JACQUEMOUD S, BARET F. PROSPECT:A model of leaf optical properties spectra[J]. Remote Sensing Environment,1990,34(2):75-91.
24 MYNENI R B, ROSS J. The Hot Spot Effect in Plant Canopy Reflectance[M]. Springer Verlag,1991:139-159.
25 CHO M A, SKIDMORE A K, ATZBERGER C. Towards red-edge positions less sensitive to canopy biophysical parameters for leaf Chlorophyll estimation using properties optique spectrales des feuilles (PROSPECT) and scattering by arbitrarily inclined leaves (SAILH) simulated data[J]. International Journal of Remote Sensing,2008,29(8):2241-2255.
26 LIU Yang, LIU Ronggao, CHEN Jingming,et al. Advances and prospects of remote sensing inversion of Leaf Area Index[J]. Journal of Earth Information Science,2013,15(5):734-743.
26 刘洋,刘荣高,陈镜明,等. 叶面积指数遥感反演研究进展与展望[J]. 地球信息科学学报,2013,15(5):734-743.
27 WANG Dongwei, MENG Xianzhi, WANG Jindi,et al. Advances in remote sensing inversion of Leaf Area Index[J]. Journal of Wuyi University(Natural Science Edition),2009,23(4):47-52.
27 王东伟,孟宪智,王锦地,等. 叶面积指数遥感反演方法进展[J]. 五邑大学学报(自然科学版),2009,23(4):47-52.
28 GUO Xiaoyan. Quantitative inversion of apple canopy parameters based on HJ-1A-HSI data and PROSAIL model[D]. Tai'an:Shandong Agricultural University,2019.
28 郭晓燕. 基于HJ-1A-HSI数据及PROSAIL模型的苹果冠层参数定量反演[D]. 泰安:山东农业大学,2019.
29 WANG Jindi, ZHANG Ge, XIAO Yueting,et al. A priori knowledge of spatial-temporal distribution of crop growth parameters based on spectral database of ground objects[J]. Journal of Beijing Normal University (Natural Science Edition),2007,43(3):284-291.
29 王锦地,张戈,肖月庭,等. 基于地物波谱库构造农作物生长参数的时空分布先验知识[J]. 北京师范大学学报(自然科学版),2007,43(3):284-291.
30 WANG Lijuan, NIU Zheng. Study on parameter sensitivity of PROSAIL model[J]. Remote Sensing Technology and Application,2014,29(2):219-223.
30 王李娟,牛铮. PROSAIL模型的参数敏感性研究[J]. 遥感技术与应用,2014,29(2):219-223.
31 MA Hanqing, ZHANG Kai, MA Chunfeng,et al. Research progress on parameter sensitivity analysis in ecological and hydrological models of remote sensing[J].National Remote Sensing Bulletin,2022,26(2):286-298.
31 马瀚青,张琨,马春锋,等. 参数敏感性分析在遥感及生态水文模型中的研究进展[J]. 遥感学报,2022,26(2):286-298.
[1] 金梦婷,徐权,郭鹏,韩宝华,金军. 基于面向对象多特征学习的无人机影像农作物精细分类方法[J]. 遥感技术与应用, 2023, 38(3): 588-598.
[2] 凌菊,李爱农,靳华安. 基于DART模型和随机森林估算山地叶面积指数[J]. 遥感技术与应用, 2023, 38(1): 39-50.
[3] 张亚倩,骆社周,王成,习晓环,聂胜,黎东,李光辉. 联合无人机激光雷达和高光谱数据反演玉米叶面积指数[J]. 遥感技术与应用, 2022, 37(5): 1097-1108.
[4] 沈贝贝,张景,李明,丁蕾,王旭,辛晓平. 内蒙古草原叶面积指数时空格局与水热影响[J]. 遥感技术与应用, 2022, 37(1): 253-261.
[5] 屈炀,袁占良,赵文智,陈学泓,陈家阁. 基于多时序特征和卷积神经网络的农作物分类[J]. 遥感技术与应用, 2021, 36(2): 304-313.
[6] 孙奇,关琳琳,焦全军,刘新杰,戴华阳. 基于植被指数融合的冬小麦生物量反演研究[J]. 遥感技术与应用, 2021, 36(2): 391-399.
[7] 尹燕旻,贾立. 基于Sentinel-2的闪电河流域农作物分类研究[J]. 遥感技术与应用, 2021, 36(2): 400-410.
[8] 汪垚,方红亮,张英慧,李思佳. 基于机载LVIS和星载GLAS波形LiDAR数据反演森林LAI[J]. 遥感技术与应用, 2020, 35(5): 1004-1014.
[9] 侯吉宇,周艳莲,刘洋. 不同叶面积指数遥感数据模拟中国总初级生产力的时空差异[J]. 遥感技术与应用, 2020, 35(5): 1015-1027.
[10] 胡月童,武爽,冯险峰,刘洋. 面向遥感叶面积指数产品的地形校正研究[J]. 遥感技术与应用, 2020, 35(5): 1070-1078.
[11] 桑宇星,刘刚,江聪,任舒艳,朱再春. 近30 a中国叶面积指数变化趋势的不确定性评估[J]. 遥感技术与应用, 2020, 35(5): 1028-1036.
[12] 刘刚,桑宇星,赵茜,江聪,朱再春. 生态系统模型模拟中国叶面积指数变化趋势及驱动因子的不确定性[J]. 遥感技术与应用, 2020, 35(5): 1037-1046.
[13] 郭利彪,刘桂香,运向军,张勇,孙世贤. 基于数据机理的植被叶面积指数遥感反演研究[J]. 遥感技术与应用, 2020, 35(5): 1047-1056.
[14] 方红亮. 我国叶面积指数卫星遥感产品生产及验证[J]. 遥感技术与应用, 2020, 35(5): 990-1003.
[15] 薛华柱,王昶景,周红敏,王锦地,万华伟. 基于模拟退火算法的BP神经网络模型估算高分辨率叶面积指数[J]. 遥感技术与应用, 2020, 35(5): 1057-1069.