Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (4): 835-841    DOI: 10.11873/j.issn.1004-0323.2023.4.0835
热红外遥感专栏     
陆表比辐射率对遥感陆表温度反演结果的影响分析
曹广真1(),闵敏2,侯鹏3
1.中国气象局中国遥感卫星辐射测量和定标重点开放实验室 许健民气象卫星创新中心 国家卫星气象中心,北京 100081
2.中山大学大气科学学院,广东 珠江 519082
3.环境保护部卫星环境应用中心 国家环境保护卫星遥感重点实验室,北京 100094
The Impact of Land Surface Emissivity on the Retrieval of Land Surface Temperature from Thermal Remote Sensing Data
Guangzhen CAO1(),Min MIN2,Peng HOU3
1.Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites,FengYun Meteorological Satellite Innovation Center (FY-MSIC),China Meteorological Administration (LRCVES/CMA),Beijing 100081,China
2.School of Atmospheric Sciences,Sun Yat-Sen University,Zhuhai 519082,China
3.State Environmental Protection Key Laboratory of Satellite Remote Sensing,Satellite Environment Center,Ministry of Environmental Protection of People’s Republic of China,Beijing 100094,China
 全文: PDF(3545 KB)   HTML
摘要:

陆表比辐射率(Land Surface Emissivity,LSE)是衡量物体表面以热辐射形式释放能量相对强弱能力的物理量,是影响遥感陆表温度(Land Surface Temperature, LST)的重要基本参数之一。为了分析不同条件下LSE对遥感LST反演结果的影响,基于Himawari 8 AHI (Advanced Himawari Imager, AHI)的分裂窗通道热红外遥感数据,采用Wan 及Dozier的分裂窗算法,研究陆表温度反演结果对LSE的敏感性。首先,对LSE产品分别加入不同均值和标准差的高斯噪声,以此代表LSE不同的误差水平;然后,在其他条件不变的情况下,将带不同噪声的LSE和不带噪声的LSE分别输入分裂窗算法进行LST的反演;最后,分析不同时间、不同水汽、不同观测角度和不同下垫面条件下,LSE对LST的影响。结果表明:①无论白天、夜间还是日均LST,输入添加噪声的LSE较输入原始的LSE反演所得的LST数值总体略低,而且随着所添加噪声标准差的增大,所得LST差值的标准差增大。当LSE的噪声标准差为0.01时,所得白天、夜间和日均LST差值的标准差分别为0.48 K、0.52 K和0.34 K;而当LSE的噪声标准差为0.03时,所得LST差值的标准差则分别升高到1.46 K、1.57 K和0.88 K。②不管水汽和观测角度条件如何,总体上,输入添加噪声的与输入原始LSE反演所得的LST相关系数随着所加噪声标准差的增大而减小,均方根误差和标准差则随着所加噪声标准差的增大而增大,偏差为负值,其绝对值随所加噪声标准差的增大而减小。③对于不同的下垫面,随着所加噪声标准差的增大,LSE添加噪声与不添加噪声反演所得的LST差值的标准差增大,当所加噪声标准差为0.01时,多树草原、开放灌木和草原LST差值的标准差分别为0.52 K、0.51 K和0.53 K。而当所加噪声标准差为0.03时,三者LST差值的标准差分别升高到1.58 K、1.53 K和1.6 K。

关键词: 陆表比辐射率陆表温度高斯分布噪声分裂窗算法    
Abstract:

Land Surface Emissivity (LSE) is a key parameter that measures the ability of the object surface to release energy in the thermal radiation. And it plays an important role in Land Surface Temperature (LST) retrieval from the thermal remote sensing data. To evaluate the effect of Land Surface Emissivity (LSE) on the retrieval of Land Surface Temperature (LST), firstly three groups of Gaussian distribution randoms with different mean and standard deviation values are generated to present the noises of the LSE products. Secondly the well-known Split Window Algorithm (SWA) is selected to retrieve LST with the Advanced Himawari Imager (AHI) data and LSE products added the Gaussian distribution noises. Finally LST difference between retrieved by inputting LSE with noises and that without noise under different conditions (single temporal LST, multi-temporal LST, averaged LST, LST of different water vapor contents and different sensor zenith angles, LST of different land covers) are analyzed. Our study shows that the retrieved LST will be smaller when LSE with noises is input into the SWA; The bigger the noise’s standard deviation is, the bigger the LST difference’s standard deviation will be; When the noise’s standard deviation is 0.01, the standard deviation of the LST difference in day, night and daily average is 0.48 K、0.52 K and 0.34 K relatively. While when the noise’s standard deviation is 0.03, the standard deviation of the LST difference in the three different time is 1.46 K、1.57 K and 0.88 K. At conditions of different water vapor contents and different sensor zenith angles, the results show that the correlation coefficient between the LST retrieved with LSE added noise and that without noise will be smaller with the bigger of the added noise, while the root mean squared error and standard deviation will be bigger with the bigger of standard deviation of the added noise. The bias volue is less than 0, and its absolute will be smaller with the bigger of standard deviation of the added noise. As for different land covers, when the noise’s standard deviation of LSE is 0.01, the LST difference’s standard deviation for woody savannas, open shrubland and savannas is 0.52 K、0.51 K and 0.53 K separately; When the noise’s standard deviation is 0.03, the LST difference’s standard deviation for them is 1.58 K, 1.53 K and 1.6 K.

Key words: Land surface emissivity    Land surface temperature    Gaussian distribution noises    The split window algorithm
收稿日期: 2021-10-28 出版日期: 2023-09-11
ZTFLH:  TP79  
基金资助: 国家重点研发计划项目(2018YFF0300101);国家自然科学基金项目(42071393);风云四号地面应用系统工程建设项目等共同资助
作者简介: 曹广真(1976-),女,山东邹城人,研究员,主要从事多源数据融合与环境遥感方面的研究。E?mail:caogz@cma.gov.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曹广真
闵敏
侯鹏

引用本文:

曹广真,闵敏,侯鹏. 陆表比辐射率对遥感陆表温度反演结果的影响分析[J]. 遥感技术与应用, 2023, 38(4): 835-841.

Guangzhen CAO,Min MIN,Peng HOU. The Impact of Land Surface Emissivity on the Retrieval of Land Surface Temperature from Thermal Remote Sensing Data. Remote Sensing Technology and Application, 2023, 38(4): 835-841.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.4.0835        http://www.rsta.ac.cn/CN/Y2023/V38/I4/835

图1  陆表比辐射率所添加的3种不同的高斯噪声
图2  不同时间输入添加不同噪声的LSE与输入原始LSE所得的LST差值直方图
图3  不同水汽条件下、不同时间输入添加不同噪声的LSE与输入原始LSE所得的LST统计特征
图4  不同角度条件下、不同时间输入添加不同噪声的LSE与输入原始LSE所得的LST统计特征
图5  不同下垫面条件下输入添加不同噪声的LSE与输入原始LSE所得的LST差值散点图
1 LI Z L, TANG B H, WU H, et al. Satellite-derived land surface temperature: Current status and perspectives[J]. Remote Sensing of Environment,2013,131:14-37. DOI:10. 1016/J.RSE.2012.12.008
doi: 10. 1016/J.RSE.2012.12.008
2 ANDING D, KAUTH R. Estimation of sea surface temperatures from space [J]. Remote Sensing of Environment, 1970, 1:217-220. DOI: 10.1016/S0034-4257(70)80002-5
doi: 10.1016/S0034-4257(70)80002-5
3 PRICE J C. Land surface temperature measurements from split window channels of the NOAA 7 advance very high resolution radiometer [J]. Journal of Geophysics Research,1984,89: 7231-7237. DOI: 10.1029/JD089iD05p07231
doi: 10.1029/JD089iD05p07231
4 BECKER F, LI Z L. Toward a local split window method over land surface [J]. International Journal of Remote Sensing,1990,11:369-393. DOI:10.1080/01431169008955028
doi: 10.1080/01431169008955028
5 SOBRINO J A, CASELLES V. A methodology for obtaining the crop temperature from NOAA-9 AVHRR data[J]. International Journal of Remote Sensing,1991,12:461-475. DOI: 10.1080/01431169108955280
doi: 10.1080/01431169108955280
6 COLL C, CASELLES V. On the atmospheric dependence of the split-window equation for land temperature[J]. International Journal of Remote Sensing,1994,15:105-122. DOI:10.1080/01431169408954054
doi: 10.1080/01431169408954054
7 FRANCA G B, CRACKNELL A P. Retrieval of land and sea surface temperature using NOAA-11 AVHRR data in north-eastern Brazill[J]. International Journal of Remote Sensing, 1994, 15:695-712. DOI:10.1080/014311694089542 01
doi: 10.1080/014311694089542 01
8 WAN Z, DOZIER J. A generalized split-window algorithm for retrieving land- surface temperature from space [J]. IEEE Transactions on Geosciences and Remote Sensing, 1996, 34: 892-905. DOI: 10.1109/36.508406
doi: 10.1109/36.508406
9 YU Y, TARPLEY D, PRIVETTE J L,et al.Developing algo-rithm for operational GOES-R land surface temperature product[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(3):936-951. DOI:10.1109/TGRS.2008.2006180
doi: 10.1109/TGRS.2008.2006180
10 CHEN Hanyue. Comparison of LST retrieval precision and sensitivity analysis between two split-window algorithems[D]. Fuzhou: Fujian Normal University,2010.
10 陈瀚阅.劈窗算法陆表温度反演精度比较与敏感性分析[D].福州:福建师范大学,2010.
11 YU Y, PRIVETTE J L, PINHEIRO A C. Evaluation of split-window land surface temperature algorithms for generating climate data records[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,46(1):179-192. DOI:10.1109/TGRS.2007.909097
doi: 10.1109/TGRS.2007.909097
12 MA Xiaogang. Optimization of vegetation emissivity scheme and Land Surface Temperature simulation over the Tibetan Plateau in CLM[D]. Yangling:Northwest A&F University,2021.
12 马小刚. CLM中植被发射率方案的发展及其对青藏高原地表温度的模拟[D].杨陵:西北农林科技大学,2021.
13 WANG H, YU Y, YU P, et al. Land surface emissivity product for NOAA JPSS and GOES-R missions: Methodology and evaluation[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(1):307-318. DOI:10.1109/TGRS. 2019.2936297
doi: 10.1109/TGRS. 2019.2936297
[1] 李永康,王新军,马燕飞,陈蓓,闫立男,张冠宏. 基于机器学习算法的AMSR-2地表温度降尺度研究[J]. 遥感技术与应用, 2022, 37(2): 474-487.
[2] 李珊珊,蒋耿明. 基于通用分裂窗算法和Landsat-8数据的地表温度反演研究[J]. 遥感技术与应用, 2018, 33(2): 284-295.
[3] 潘颖琪,贾立. 基于分组分裂窗算法的MTSAT-1R地表温度反演[J]. 遥感技术与应用, 2015, 30(4): 626-637.
[4] 武胜利,杨 虎. AMSR-E亮温数据与MODIS陆表分类产品结合反演全球陆表温度[J]. 遥感技术与应用, 2007, 22(2): 234-237.