Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (4): 855-868    DOI: 10.11873/j.issn.1004-0323.2023.4.0855
热红外遥感专栏     
极轨卫星地表温度时间归一化方法—以MODIS为例
胡解君德1(),杨英宝1(),潘鑫1,常沁楠1,王爱辉1,2
1.河海大学 地球科学与工程学院,江苏 南京 211100
2.中国铁路设计集团有限公司,天津 300000
A Land Surface Temperature Temporal-effect Normalization Method for Polar-orbiting Satellite: A Case Study of MODIS
Junde HUXIE1(),Yingbao YANG1(),Xin PAN1,Qinnan CHANG1,Aihui WANG1,2
1.School of Earth Sciences and Engineering,Hohai University,Nanjing 211100,China
2.China Railway Design Group Co. ,Ltd. Tianjin 300000,China
 全文: PDF(7627 KB)   HTML
摘要:

地表温度(Land Surface Temperature,LST)在陆地—大气能量交换等研究中扮演着重要角色。LST随时间变化迅速,且极轨遥感卫星获取的LST的地方太阳时在像元间存在差异,需进行时间归一化以提高LST遥感产品的应用价值。面向MODIS LST产品,基于FY-4A高时间分辨率的LST产品,引入地表温度日变化模型(DTC),构建了粗细分辨率转换配准方法,提出了基于日变化信息的LST时间归一化模型(Temporal-effect Normalization Model of land surface temperature Based on Diurnal variation information, BDTNM),探讨了时间窗口、归一化时刻与空值情况对模型的影响。利用张掖地区站点实测数据、模拟数据对INA08_2模型和BDTNM模型归一化结果进行验证和评价,结果表明BDTNM方法比INA08_2模型具有更好的稳定性及鲁棒性,精度提高了0.4~1.0 K,并具有一定的空值插补能力,该方法对其他遥感卫星LST的时间归一化也具有一定的借鉴意义。

关键词: 地表温度MODIS时间归一化日变化模型    
Abstract:

Land Surface Temperature (LST) plays an important role in the study of land atmosphere energy exchange. LST changes rapidly with time, and the local solar time of LST obtained by polar orbit remote sensing satellite is different among pixels. Time normalization is needed to improve the application value of LST remote-sensing products. For MODIS LST products, a Temporal-effect Normalization Model of land surface temperature Based on Diurnal variation information (BDTNM) is proposed after the Diurnal Temperature Cycle model (DTC) is introduced and the coarse and fine resolution conversion registration method is constructed based on FY-4A high time resolution LST products. The effects of time window, normalized time and null value on the model are discussed. The normalized results of the INA08_2 model and BDTNM model are verified and evaluated by using the measured and simulated data of stations in Zhangye area. The proposed model has the following characteristics: (1) It can realize seamless reconstruction of FY-4A LST data with different loss rates; (2) Only FY-4A and MODIS LST product data are used to normalize the MODIS LSTs based on retaining the original precision and characteristics of MODIS LSTs; (3) Experiment and evaluation with simulated data, the RMSE and MAE of time normalization of BDTNM model are 0.45 k and 0.32 k, which are higher than those of INA08_2 model (RMSE is 1.36 k and MAE is 1.15 k) ; (4) The BDTNM model is not affected by the data quality and missing values of the other three observations when it normalizes the MODIS observation data at a certain time, and has a certain ability of null value reconstruction. According to the site simulation data, the model reconstructs the MODIS LST data and normalizes it to the standard time, RMSE is 0.53 k, MAE is 0.48 k. The model established in this study can also be used for reference to other remote-sensing satellite LST time normalization.

Key words: Land surface temperature    MODIS    Temporal normalization    Diurnal temperature cycle model
收稿日期: 2021-12-09 出版日期: 2023-09-11
ZTFLH:  P237  
基金资助: 国家自然科学基金面上项目(42071346);江苏省研究生科研与实践创新计划项目(SJCX21_0210);中央高校基本科研业务费(学生项目)
通讯作者: 杨英宝     E-mail: xiejunde_hu@163.com;yyb@hhu.edu.cn
作者简介: 胡解君德(1997-),男,新疆昌吉人,硕士研究生,主要从事地表温度的理论和应用研究。E?mail: xiejunde_hu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡解君德
杨英宝
潘鑫
常沁楠
王爱辉

引用本文:

胡解君德,杨英宝,潘鑫,常沁楠,王爱辉. 极轨卫星地表温度时间归一化方法—以MODIS为例[J]. 遥感技术与应用, 2023, 38(4): 855-868.

Junde HUXIE,Yingbao YANG,Xin PAN,Qinnan CHANG,Aihui WANG. A Land Surface Temperature Temporal-effect Normalization Method for Polar-orbiting Satellite: A Case Study of MODIS. Remote Sensing Technology and Application, 2023, 38(4): 855-868.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.4.0855        http://www.rsta.ac.cn/CN/Y2023/V38/I4/855

图1  研究区范围及地面站点位置 审图号:GS(2020)4619
图2  研究区MODIS地表温度数据及过境时间
图3  技术路线图
图4  MODIS LST数据过境时间频率分布图
图5  FY-4A LST数据时序有效率空间分布图
图6  FY-4A原始数据及空值插补后结果
图7  FY-4A LST在站点处重建结果图
站点FY-4A原始数据重建后数据仅重建部分
RMSE/KrMAE/KRMSE/KrMAE/KRMSE/KrMAE/K
张掖湿地站2.850.982.183.080.982.353.600.982.77
黑河遥感站4.600.993.524.480.993.444.000.983.12
大满超级站1.610.991.241.600.991.221.590.991.15
表1  FY-4A原始数据及重建结果误差

时间窗口

/天

张掖湿地站/K黑河遥感站/K大满超级站/K
RMSEMAERMSEMAERMSEMAE
21.911.566.094.891.531.26
31.871.645.934.721.391.11
41.791.425.874.681.321.07
51.681.375.644.501.311.04
61.611.225.594.391.120.93
71.511.185.254.221.100.88
81.631.265.284.341.120.91
91.741.325.534.411.291.01
表2  时间归一化误差与时间窗口关系
图8  两种方法在站点处时间归一化结果图(MODIS LST)
站点MODIS原始数据INA08_2归一化结果BDTNM归一化结果
RMSE/KrMAE/KRMSE/KrMAE/KRMSE/KrMAE/K
张掖湿地站1.140.990.931.850.991.551.510.991.18
黑河遥感站5.530.994.395.410.994.055.250.994.22
大满超级站1.200.990.911.330.991.171.100.990.88
表3  两种方法的时间归一化结果精度(MODIS数据)
图9  两种方法站点处时间归一化结果图(模拟数据)
站点未进行归一化INA08_2归一化结果BDTNM归一化结果
RMSE/KrMAE/KRMSE/KrMAE/KRMSE/KrMAE/K
张掖湿地站0.820.990.561.260.991.040.500.990.30
黑河遥感站1.180.990.721.880.991.620.350.990.26
大满超级站0.960.990.660.940.990.780.520.990.40
表4  两种方法时间归一化误差(模拟数据)
站点

归一化

目标时刻

未进行归一化INA08_2归一化结果BDTNM归一化结果
RMSE/KrMAE/KRMSE/KrMAE/KRMSE/KrMAE/K

张掖

湿地站

30.990.560.700.970.540.830.910.640.63
121.200.491.051.300.951.230.200.990.19
140.320.990.240.280.990.260.200.990.17
230.380.710.231.910.711.860.290.820.21

黑河

遥感站

30.400.780.301.970.931.960.320.860.20
122.26-0.062.001.460.961.420.400.950.38
140.240.990.200.400.980.320.310.980.19
230.460.440.362.810.832.790.360.580.28

大满

超级站

30.690.820.510.910.820.760.610.850.44
121.510.341.270.730.870.650.510.930.42
140.480.980.260.720.970.550.430.970.31
230.810.770.601.280.681.150.500.900.44
表5  两种方法时间归一化误差(各归一化时刻,模拟数据)
图10  研究区MOIDS数据及两种方法时间归一化结果图
归一化时刻张掖湿地站/K黑河遥感站/K大满超级站/K
RMSEMAERMSEMAERMSEMAE
31.050.770.430.350.620.54
120.370.390.470.490.610.50
140.320.390.350.290.600.48
230.350.420.530.460.690.63
表6  BDTNM模型空值重建并时间归一化误差(各归一化时刻,模拟数据)
站点

时差

大小(h)

未进行归一化 /KINA08_2归一化结果/KBDTNM归一化结果/K
RMSEMAERMSEMAERMSEMAE

张掖

湿地站

[0,0.5)0.580.491.241.110.420.22
[0.5,1)1.291.131.250.920.470.23
[1,1.5)2.021.711.411.120.530.33
[1.5,2)2.672.101.401.210.570.39

黑河

遥感站

[0,0.5)0.900.671.671.570.330.27
[0.5,1)2.131.611.951.600.350.30
[1,1.5)3.562.731.951.690.410.32
[1.5,2)5.053.812.181.900.460.37

大满

超级站

[0,0.5)0.610.420.980.900.470.39
[0.5,1)1.310.980.990.980.530.42
[1,1.5)1.941.251.030.990.550.44
[1.5,2)2.761.951.251.220.640.46
表7  两种方法的时间归一化误差(各时间差值)
1 YANG Yingbao, LI Xiaolong, CAO Chen. Downscaling urban land surface temperature based on multi-scale factor[J]. Science of Surveying and Mapping,2017,42(10):73-79.
1 杨英宝,李小龙,曹晨. 多尺度城市地表温度降尺度方法[J].测绘科学,2017,42(10):73-79.
2 ZHAO Wei, LI Ainong, ZHANG Zhengjian, et al. A Study on land surface temperature terrain effect over mountainous area based on Landsat 8 thermal infrared data[J]. Remote Sensing Technology and Application,2016,31(1):63-73.
2 赵伟,李爱农,张正健,等.基于Landsat 8热红外遥感数据的山地地表温度地形效应研究[J].遥感技术与应用,2016,31(1):63-73.
3 ZHOU J, DAI F N, ZHANG X D, et al. Developing a Temporally Land Cover-Based Look-Up Table (TL-LUT) method for estimating land surface temperature based on AMSR-E data over the Chinese landmass[J]. International Journal of Applied Earth Observation and Geoinformation,2015,34:35-50.DOI: 10.1016/j.jag.2014.07.001
doi: 10.1016/j.jag.2014.07.001
4 DUAN Sibo. Methodology development for temporal normalization of land surface temperature product derived from polar-orbiting satellite data[D]. Beijing:Chinese Academy of Sciences,2014.
4 段四波. 极轨卫星地表温度产品的时间归一化方法研究[D]. 北京:中国科学院研究生院,2014.
5 ZHAO W, WU H, YIN G, et al. Normalization of the temporal effect on the MODIS land surface temperature product using random forest regression[J]. ISPRS Journal of Photogrammetry & Remote Sensing,2019,152:109-118. DOI:10.1016/j.is-prsjprs.2019.04.008
doi: 10.1016/j.is-prsjprs.2019.04.008
6 DUAN S B, LI Z L, TANG B H, et al. Generation of a time-consistent land surface temperature product from MODIS data[J]. Remote Sensing of Environment,2014,140(140):339-349.DOI: 10.1016/j.rse.2013.09.003
doi: 10.1016/j.rse.2013.09.003
7 DUAN S B, LI Z L, TANG B H, et al. Estimation of diurnal cycle of land surface temperature at high temporal and spatial resolution from Clear-Sky MODIS data[J]. Remote Sensing, 2014, 6(4):3247-3262. DOI: 10.3390/rs6043247
doi: 10.3390/rs6043247
8 ZHU Linqing, ZHOU Ji, LIU Shaomin, et al. Temporal normalization research of airborne land surface temperature[J]. Journal of Remote Sensing,2017,21(2):193-205.
8 朱琳清, 周纪, 刘绍民,等. 航空遥感地表温度时间归一化[J]. 遥感学报,2017,21(2):193-205.
9 WAN Z, DOZIER J. A generalized split-window algorithm for retrieving land-surface temperature from space[J]. IEEE Transactions on Geoscience & Remote Sensing,1996,34(4):892-905.
10 MAO Kebia, QIN Zhihao, SHI Jiancheng, et al. The research of split-window algorithm on the MODIS[J]. Geomatics and Information Science of Wuhan University, 2005,30(8): 703-707.
10 毛克彪,覃志豪,施建成,等. 针对MODIS影像的劈窗算法研究[J]. 武汉大学学报·信息科学版, 2005,30(8): 703-707.
11 SNYDER W C, WAN Z, ZHANG Y,et al. Thermal infrared(3~14 μm) bidirectional reflectance measurements of sands and soils[J]. Remote Sensing of Environment,1997,60(1):101-109.DOI: 10.1016/S0034-4257(96)00166-6
doi: 10.1016/S0034-4257(96)00166-6
12 SNYDER W C, WAN Z. BRDF models to predict spectral refle-ctance and emissivity in the thermal infrared[J]. IEEE Tran-sactions on Geoscience & Remote Sensing,1998,36(1):214-225. DOI:10.1109/36.655331
doi: 10.1109/36.655331
13 YANG Y, CAO C, PAN X, et al. Downscaling land surface temperature in an arid area by using multiple remote sensing indices with random forest regression[J]. Remote Sensing, 2017, 9(8): 789-795. DOI: 10.3390/rs9080789
doi: 10.3390/rs9080789
14 WANG Aihui, YANG Yingbao, PAN Xin, et al. Land surface temperature reconstruction model of FY ‐4A cloudy pixels considering spatial and temporal characteristics[J]. Geomatics and Information Science of Wuhan University,2021,46(6):852-862.
14 王爱辉,杨英宝,潘鑫,等. 顾及时空特征的 FY‐4A 云覆盖像元地表温度重建模型[J]. 武汉大学学报·信息科学版,2021,46(6):852-862.
15 GAO F, MASEK J, SCHWALLER M, et al. On the blending of the landsat and MODIS surface reflectance: predicting daily landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(8):2207-2218. DOI:10.1109/TGRS.2006.872081
doi: 10.1109/TGRS.2006.872081
16 ZHOU Yi, QIN Zhihao, BAO Gang. Land surface temperature estimation under cloud cover with GIDS[J]. Journal of Remote Sensing,2012,16(3):492-504.
16 周义, 覃志豪, 包刚. GIDS 空间插值法估算云下地表温度[J]. 遥感学报,2012,16(3): 492-504.
17 XUE Xingsheng, WU Yanlan. A comparison of missing data reconstruction methods for FengYun geostationary satellite land surface temperature products[J]. Journal of Anhui Agricultural University,2017,44(2):308-315.
17 薛兴盛,吴艳兰. 面向风云静止卫星地表温度产品的缺失数据修复方法对比[J]. 安徽农业大学学报,2017,44(2):308-315.
18 SAVITZKY A, GOLAY M. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964, 36(8): 1627-1639. DOI: 10.1021/ac60214a047
doi: 10.1021/ac60214a047
19 FANG Yingbo, ZHAN Wenfeng, HUANG Fan, et al. Hourly variation of surface urban heat island over the Yangtze River delta urban agglomeration[J]. Advances in Earth Science,2017,32(2):187-198.
19 方迎波,占文凤,黄帆,等. 长三角城市群表面城市热岛日内逐时变化规律[J].地球科学进展,2017,32(2):187-198.
20 DUAN S B, LI Z L, NING W, et al. Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satel-lite data[J]. Remote Sensing of Environment,2012, 124: 15-25.DOI: 10.1016/j.rse.2012.04.016
doi: 10.1016/j.rse.2012.04.016
21 MENG Xiaocheng, LIU Hao, CHENG Jie. Evaluation and characteristic research in diurnal surface temperature cycle in China using FY-2F data[J]. Journal of Remote Sensing,2019,23(4):570-581.
21 孟翔晨, 刘昊, 程洁. 2019. 基于FY-2F数据的中国区域地表温度日变化模型评价及特征研究[J]. 遥感学报,2019,23(4):570-581.
22 JIANG G M, LI Z L, Nerry F. Land surface emissivity retrieval from combined mid-Infrared and thermal infrared data of MSGSEVIRI[J]. Remote Sensing of Environment,2006,105(4): 326-340.
23 ZHOU X, YU Y,et al. Creating a seamless 1 km resolution daily land surface temperature dataset for urban and surrounding areas in the conterminous United States[J]. Remote Sensing of Environment,2018,206:84-97. DOI:10.1016/j.rse.2017. 12.010
doi: 10.1016/j.rse.2017. 12.010
24 INAMDAR A K, FRENCH A, HOOK S, et al. Land surface temperature retrieval at high spatial and temporal resolutions over the Southwestern United States[J]. Journal of Geophysical Research: Atmospheres,2008,113(D7):D07107.DOI: 10.1029/2007jd009048
doi: 10.1029/2007jd009048
[1] 张先冉,占文凤,缪诗祺,杜惠琳,王晨光,江斯达. 基于温度日内循环模型的全球主要城市地表热岛面积时空格局遥感研究[J]. 遥感技术与应用, 2023, 38(4): 842-854.
[2] 鄢俊洁,瞿建华,袁鸣鸽,张贺. 基于深度学习的风云四号卫星绿光通道构建方法[J]. 遥感技术与应用, 2023, 38(1): 214-226.
[3] 谭磊琪,周亮,李丽,袁博,胡凤宁. 基于梯度视角的城市建筑形态对地表温度的影响[J]. 遥感技术与应用, 2022, 37(6): 1492-1503.
[4] 晏红波,李浩,卢献健,王佳华. 基于LST-VI特征空间的喀斯特地区土壤水分时空变化研究[J]. 遥感技术与应用, 2022, 37(6): 1460-1471.
[5] 廖廓,彭中,姜亚珍,党皓飞. 基于深度神经网络联合AMSR2和MODIS数据估算全球蒸散发研究[J]. 遥感技术与应用, 2022, 37(4): 878-887.
[6] 马启民,龙银平,汤世宇,贾晓鹏. 库布齐沙漠典型沙地人工林蒸散对比分析[J]. 遥感技术与应用, 2022, 37(4): 854-864.
[7] 朱爽,张锦水. 中低分冬小麦分布提取模型效率的样本特征分析[J]. 遥感技术与应用, 2022, 37(3): 608-619.
[8] 康新礼,张文豪,刘原萍,顾行发,余涛,张丽丽,徐桦昆. 基于随机森林的京津冀地区PM2.5遥感反演及变化分析[J]. 遥感技术与应用, 2022, 37(2): 424-435.
[9] 张晨,袁金国. 基于MODIS数据的河北省草地和林地的物候期及其与NPP相关分析[J]. 遥感技术与应用, 2022, 37(1): 205-217.
[10] 徐艳豪,丁忠昊,宋立生. TSEB模型在复杂下垫面下模拟结果比较研究[J]. 遥感技术与应用, 2022, 37(1): 85-93.
[11] 葛强,沈文举,李冉,李莘莘,蔡坤,左宪禹,乔保军,张云舟. 2001~2018年我国热异常点时空分布特征研究[J]. 遥感技术与应用, 2022, 37(1): 73-84.
[12] 陈喆,董庆,陈建平,赵文博,蒋良文,张广泽,冯涛,王栋,毕晓佳,边民,张权平,孟德利. 基于热红外遥感的川藏铁路昌都—林芝段地热异常区定量预测评价研究[J]. 遥感技术与应用, 2021, 36(6): 1368-1378.
[13] 胡晓静,郝晓华,王建,戴礼云,赵宏宇,李弘毅. 基于AMSR2和MODIS数据融合的雪深降尺度算法研究—以北疆地区为例[J]. 遥感技术与应用, 2021, 36(6): 1236-1246.
[14] 郭俊钰,戴礼云,梁继,王琼. 典型地表对长沙主城区地表温度的影响分析[J]. 遥感技术与应用, 2021, 36(5): 1209-1222.
[15] 敏玉芳,张耀南,康建芳,冯克庭. 基于MODIS影像的中巴经济走廊荒漠化程度时空动态监测研究[J]. 遥感技术与应用, 2021, 36(4): 827-837.