Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (4): 869-879    DOI: 10.11873/j.issn.1004-0323.2023.4.0869
面向双碳的观测与模拟专栏     
基于珞珈一号夜间灯光数据西安市碳排放空间化研究
张瑶(),张宇鑫(),张勇建,弓超,孔雅倩
陕西科技大学机电工程学院,陕西 西安 710021
Study on the Spatialization of Carbon Emission in Xi'an based on the Luminous Data of Luojia-01
Yao ZHANG(),Yuxin ZHANG(),Yongjian ZHANG,Chao GONG,Yaqian KONG
College of Mechanical and Electrical Engineering,Shaanxi University of Science and Technology,Xi'an 710021,China
 全文: PDF(3803 KB)   HTML
摘要:

基于珞珈一号夜间灯光数据和西安市能源统计数据,结合ArcGIS空间分析方法,运用高—低聚类模型,分区县对2018年西安市碳排放量进行空间化模拟,并对全市各区县碳排放强度进行计算和分类,研究西安市各区县碳排放量分布特性。结果表明:珞珈一号灯光数据与碳排放量存在较好的相关性,线性相关系数为0.720 3,四次函数多项式的相关系数最高,为0.843 5;在年度碳排放量上,西安市碳排放量呈现中心主城区高、周围县区低的空间分布特点,为聚类状态分布,且聚类结果在高值区域内聚类;全市低碳排放强度区县较多,存在少量高碳排放强度区县,对实现绿色发展模式还需要进一步调整产业结构。

关键词: 夜间灯光数据高-低聚类空间化碳排放强度    
Abstract:

Based on the night lighting data of Luojia 01 and the energy statistics of Xi'an, combined with the ArcGIS spatial analysis method, this paper uses the high oligomeric model to spatially simulate the carbon emission of Xi'an in 2018, calculate and classify the carbon emission intensity of all districts and counties in the city, and study the distribution characteristics of carbon emission of all districts and counties in Xi'an. The results show that there is a good correlation between Luojia-01 light data and carbon emissions, the linear correlation coefficient is 0.720 3, and the correlation coefficient of quartic function polynomial is the highest, which is 0.843 5; In terms of annual carbon emissions, Xi'an's carbon emissions show the spatial distribution characteristics of high in the central main urban area and low in the surrounding counties, which is a cluster distribution, and the clustering results are clustered in the high value area; There are many low-carbon emission intensity districts and counties in the city, and there are a few high-carbon emission intensity districts and counties. The industrial structure needs to be further adjusted to realize the green development model.

Key words: Night light data    High oligomers    Spatialization    Carbon emission intensity
收稿日期: 2022-02-19 出版日期: 2023-09-11
ZTFLH:  P208  
基金资助: 国家自然科学基金项目“可再生能源环境下智能电网需求响应策略及商业运营机制研究”(51806133)
通讯作者: 张宇鑫     E-mail: zhangyao@sust.edu.cn;YuxinZhang@tom.com
作者简介: 张 瑶(1990-),女,陕西西安人,博士,副教授,主要从事GIS应用、智能社区体系构建研究。E?mail:zhangyao@sust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张瑶
张宇鑫
张勇建
弓超
孔雅倩

引用本文:

张瑶,张宇鑫,张勇建,弓超,孔雅倩. 基于珞珈一号夜间灯光数据西安市碳排放空间化研究[J]. 遥感技术与应用, 2023, 38(4): 869-879.

Yao ZHANG,Yuxin ZHANG,Yongjian ZHANG,Chao GONG,Yaqian KONG. Study on the Spatialization of Carbon Emission in Xi'an based on the Luminous Data of Luojia-01. Remote Sensing Technology and Application, 2023, 38(4): 869-879.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.4.0869        http://www.rsta.ac.cn/CN/Y2023/V38/I4/869

图1  研究区范围
原煤洗精煤焦炭天然气汽油煤油柴油燃料油液化石油气热力电力
折标煤系数0.714 30.900 00.971 413.300 01.471 41.471 41.457 11.428 61.714 30.034 13.450 0
碳排放系数0.755 90.755 90.855 00.448 30.553 80.571 40.592 10.618 50.504 20.670 00.272 0
表1  能源消耗标准煤折算系数、碳排放系数
图2  碳排放量与灯光总值线性拟合关系
方程b1b2b3b4常量R2
幂函数121.850 0————————0.780 6
对数函数66.071 0——————107.8300.757 0
二次函数0.145 812.057 0————134.6800.757 9
三次函数0.042 6-2.389 636.096 0——89.8630.821 5
四次函数0.008 0-0.450 45.728 7-6.438 1144.6000.843 5
表2  碳排放量与灯光总数各函数关系
图3  西安市碳排放空间分布特征(a)碳排放空间模拟图 (b)各区县碳排放分级图
图4  各碳排放级别区域影响因素(a)各碳排放级别工业总产值占比 (b)各碳排放级别平均城市化率
聚类程度临界值显著性水平
高值区域

>2.58

1.96~2.58

1.65~1.96

随机产生高聚类可能性<1%

随机产生高聚类可能性<5%

随机产生高聚类可能性<10%

随机-1.65~1.65
低值区域

<2.58

-2.58~-1.96

-1.96~-1.65

随机产生低聚类可能性<1%

随机产生低聚类可能性<5%

随机产生低聚类可能性<10%

表3  高—低聚类参考结果
图5  全市2005~2018年人口数、建成区面积、GDP和工业生产总值变化
级别碳排放强度(t/万元)区县
1<0.5雁塔区、未央区、莲湖区、碑林区、新城区、高陵区、长安区、灞桥区、阎良区
20.5~1.0临潼区、鄠邑区
3>1.0蓝田县、周至县
表4  西安市区县碳排放强度分级
图6  碳排放量与碳排放强度关系
图7  各区县第一、二、三产业占比
1 SARKODIE S A, OWUSU P A. Escalation effect of fossil-based CO2 emissions improves green energy innovation[J]. Science of the Total Environment, 2021, 785.DOI:10.1016/J.SCITOTENV.2021.147257
doi: 10.1016/J.SCITOTENV.2021.147257
2 PAN Jiahua, LI Meng, ZHANG Kun. China's plan to achieve carbon peak and carbon neutralization[N]. China Social Science Journal, 2021-11-26(006).
2 潘家华,李萌,张坤.实现碳达峰碳中和的中国方案[N].中国社会科学报,2021-11-26(006).
3 WANG Shaohong. Current situation, challenges and breakthroughs of China's energy transformation under the goal of carbon peak[J]. Price Theory and Practice,2021,1-5[2021-12-07].
doi: 10.19851/j.cnki.CN111010/F.2021.08.246
3 DOI:10.19851/j.cnki.CN111010/F.2021.08.246.王少洪.碳达峰目标下我国能源转型的现状、挑战与突破[J]. 价格理论与实践,2021:1-5[2021-12-07].DOI:10.19851/j.cnki.CN111010/F.2021.08.246 .
doi: 10.19851/j.cnki.CN111010/F.2021.08.246
4 CHEN Jizhen, ZHANG Jun, XUE Liang. Analysis of the spatio-temporal differences of relative poverty levels in Shaanxi Province based on night light data[J]. Remote SensingTechnology and Applications,2022,37(4):908-918.
4 陈吉臻,张君,薛亮. 基于夜间灯光数据的陕西省县域相对贫困水平时空差异分析[J].遥感技术与应用,2022,37(4):908-918.
5 WANG Han, HU Ziyuan, LI Fuquan, et al. Research on the spatial-temporal process of urbanization in Chengdu-Chongqing region based on nighttime light from 2000 to 2018[J]. Remote Sensing Technology and Applications,2022,37(4):897-907.
5 王晗,胡自远,李付全,等.基于夜间灯光的2000-2018年成渝地区城市化过程研究[J].遥感技术与应用, 2022, 37(4):897-907.
6 ZOU Dan, ZHOU Yuke, LIN Jingtang, et al. Analysis of inequality of socioeconomic development on both sides of Hu Huanyong line using nighttime light[J]. Remote Sensing Technology and Applications,2022,37(4):929-937.
6 邹丹,周玉科,林金堂,等.利用夜间灯光分析胡焕庸线两侧社会经济发展不均衡状况[J].遥感技术与应用,2022,37(4):929-937.
7 MA Zhongyu, XIAO Hongwei. Spatiotemporal simulation of carbon emissions in different provinces of China based on satellite night light data[J]. China's Population,Resources and Environment, 2017, 27(9):143-150.
7 马忠玉,肖宏伟.基于卫星夜间灯光数据的中国分省碳排放时空模拟[J].中国人口·资源与环境, 2017, 27(9):143-150.
8 XU Yanyan, ZHOU Yangang, LI Hongzhong, et al. Study on temporal and spatial dynamic characteristics of carbon emission in Chengdu Chongqing Urban Agglomeration based on DMSP/OLS night light data[J]. Environmental Pollution and Prevention,2019,41(12):1504-1511.
8 许燕燕,周廷刚,李洪忠,等.基于DMSP/OLS夜间灯光数据的成渝城市群碳排放时空动态特征研究[J].环境污染与防治, 2019, 41(12):1504-1511.
9 GUO Xinyi, YAN Qingwu, TAN Xiaoyue, et al. Simulation of spatial distribution of carbon emissions in Jiangsu Province based on DMSP/OLS and NDVI[J]. Research on World Geography, 2016, 25(4):102-110.
9 郭忻怡,闫庆武,谭晓悦, 等.基于DMSP/OLS与NDVI的江苏省碳排放空间分布模拟[J].世界地理研究, 2016, 25(4):102-110.
10 YU Bailang, WANG Congxiao, GONG Wenkang,et al. Research on night light remote sensing and urban problems: Data, methods, applications and Prospects[J]. Journal of Remote Sensing, 2021, 25(1):342-364.
10 余柏蒗,王丛笑,宫文康,等.夜间灯光遥感与城市问题研究:数据、方法、应用和展望[J].遥感学报, 2021, 25(1):342-364.
11 LI Feng, LIU Jun, LIU Wenlong, et al. Temporal and spatial dynamic analysis of carbon emission from night light data in Beijing Tianjin Hebei County[J]. Journal of Xinyang Normal University(Natual Science Edition),2021,34(2):230-236.
11 李峰,刘军,刘文龙,等.京津冀县域夜间灯光数据碳排放时空动态分析[J].信阳师范学院学报(自然科学版), 2021, 34(2):230-236.
12 SUN Guiyan, WANG Sheng, XIAO Lei. Study on carbon emission and influencing factors of energy consumption in the upper reaches of the Yangtze River based on night light data[J].Regional Research and Development,2020,39(4):159-162,174.
12 孙贵艳,王胜,肖磊.基于夜间灯光数据的长江上游地区能源消费碳排放及影响因素研究[J].地域研究与开发, 2020, 39(4):159-162,174.
13 LI Xiang, ZHU Jiang, YIN Xiangdong, et al. Spatialization of GDP in Guangdong Province using night light data of Luojia-01[J]. Remote Sensing Information, 2021, 36(2):40-45.
13 李翔,朱江,尹向东,等.利用珞珈一号夜间灯光数据的广东省GDP空间化[J].遥感信息, 2021, 36(2):40-45.
14 LOU Ge, CHEN Qiuxiao. Research on rural population spatialization method based on "Luojia-01" luminous remote sensing data fusion[J].Architecture and Culture, 2021(1):74-75.
14 娄格,陈秋晓.基于“珞珈一号”夜光遥感数据融合的乡村人口空间化方法研究[J].建筑与文化, 2021(1):74-75.
15 WANG Meiling, ZHANG Hesheng. Study on population spatialization based on night light data of Luojia-01[J]. Geospatial Information, 2021, 19(9):53-56,7.
15 王美玲,张和生.基于珞珈一号夜间灯光数据的人口空间化研究[J].地理空间信息, 2021, 19(9):53-56,7.
16 YU Tingting. Study on population spatialization in Ganjingzi District of Dalian based on night light data of Luojia-01[J]. Scientific and Technological Innovation,2021(1): 91-92.
16 于婷婷.基于珞珈一号夜间灯光数据的大连市甘井子区人口空间化研究[J].科学技术创新, 2021(1):91-92.
17 LU Yifan, LIANG Yingran, LU Siyan, et al. Simulation of spatial distribution of carbon emissions in Guangzhou and analysis of its influencing factors based on "Luojia-01" night lights and urban functional zoning[J]. Journal of Geoinformation Science, 2022, 24(6):1176-1188.
17 卢奕帆,梁颖然,卢思言,等.结合“珞珈一号”夜间灯光与城市功能分区的广州市碳排放空间分布模拟及其影响因素分析[J].地球信息科学学报, 2022, 24(6):1176-1188.
18 WANG Jian, XUE Dongqian, MA Beibei. Research on decomposition of carbon emission factors of energy consumption in Xi'an based on GFI model[J]. Geography of Arid Areas, 2018, 41(6):1388-1395.
18 王剑,薛东前,马蓓蓓.基于GFI模型的西安市能源消费碳排放因素分解研究[J].干旱区地理, 2018, 41(6):1388-1395.
19 KANG Mingmin. Research on peak value prediction and control strategy of carbon emission in Xi'an[D].Xi'an:Xi'an University of Architecture and Technology,2020.
19 康铭敏.西安市碳排放峰值预测及控制策略研究[D].西安:西安建筑科技大学, 2020.
20 ZHONG Liang, LIU Xiaosheng. Application potential analysis of new night light data of Luojia-01[J]. Bulletin of Surveying and Mapping, 2019(7):132-137.
20 钟亮,刘小生.珞珈一号新型夜间灯光数据应用潜力分析[J]. 测绘通报, 2019(7):132-137.
21 Luojia-01 satellite data and application service [J]. Satellite Application, 2019(5): 26-29.
21 珞珈一号 01 星数据与应用服务[J].卫星应用, 2019(5):26-29.
22 HONG Yeying, XIANG Sijie, CHEN Jingxin. An empirical study on the impact of population size and structure on carbon emissions in Chongqing: An analysis based on STIRPAT model[J]. Northwest Population, 2015, 36(3):13-17.
22 洪业应,向思洁,陈景信.重庆市人口规模、结构对碳排放影响的实证研究——基于STIRPAT模型的分析[J].西北人口, 2015,36(3):13-17.
23 LI Guozhi, ZHOU Ming. Dynamic effects of population and consumption on carbon dioxide emissions: An empirical analysis based on variable parameter model[J]. Population Studies, 2012, 36(1):63-72.
23 李国志,周明.人口与消费对二氧化碳排放的动态影响——基于变参数模型的实证分析[J].人口研究, 2012, 36(1):63-72.
24 YANG Zhen, LI Zehao. Study on carbon emission measurement and dynamic characteristics of its driving factors in Central China[J]. Ecological Economy, 2022, 38(5):13-20.
24 杨振,李泽浩.中部地区碳排放测度及其驱动因素动态特征研究[J].生态经济, 2022, 38(5):13-20.
25 ZHONG Yusheng. The impact of population change on carbon emissions in Jiangxi Province-Based on STIRPAT extended model[J]. Journal of Fujian Business College, 2017(4):14-21.
25 钟宇声.江西省人口变动对碳排放的影响——基于STIRPAT扩展模型[J].福建商学院学报, 2017(4):14-21.
26 CHUAI X W, FENG J X. High resolution carbon emissions simulation and spatial heterogeneity analysis based on big data in Nanjing City, China[J]. Science of the Total Environment,2019, 686:828-837.DOI:10.1016/j.scitotenv.2019.05.138
doi: 10.1016/j.scitotenv.2019.05.138
27 LIU Chang, SU Yun, LI Lingling. Estimation and spatial distribution of carbon emissions from county energy consumption in China[J]. Environmental Pollution and Prevention, 2020, 42(1):113-119.
27 刘畅,苏筠,黎玲玲.中国县域能源消费碳排放估算及其空间分布[J].环境污染与防治,2020,42(1):113-119.
28 MURA M, LONGO M, TOSCHI L, et al. Industrial carbon emission intensity: A comprehensive dataset of European regions[J].Data in Brief,2021,36. DOI:10.1016/J.DIB.2021. 107046
doi: 10.1016/J.DIB.2021. 107046
29 YIN J L, DING Q, FAN X H. Direct and indirect contributions of energy consumption structure to carbon emission intensity[J]. International Journal of Energy Sector Management, 2021, 15(3).DOI:10.1108/IJESM-08-2020-0009
doi: 10.1108/IJESM-08-2020-0009
30 XU Huan, FU Bihong, GUO Qiang, et al. Study on the integration process of Xi'an and Xianyang and urban expansion[J]. Journal of Remote Sensing, 2018, 22(2):347-359.
30 徐焕,付碧宏,郭强,等.西咸一体化过程与城市扩展研究[J].遥感学报, 2018, 22(2):347-359.
31 GUAN Mingjie, YUAN Yanhong, RAN Muxi, et al.Influencing factors and peak value prediction of energy carbon emission in Shanxi Province based on STIRPAT model[J]. Chinese Coal,2021,47(9):48-55.
31 关敏捷,袁艳红,冉木希,等.基于STIRPAT模型的山西省能源碳排放影响因素及峰值预测[J].中国煤炭, 2021, 47(9):48-55.
32 ZHANG M M, YANG Z K, LIU L Y, et al. Impact of renewable energy investment on carbon emissions in China - An empirical study using a nonparametric additive regression model[J]. Science of the Total Environment, 2021, 785.DOI:10.1016/J.SCITOTENV.2021.147109
doi: 10.1016/J.SCITOTENV.2021.147109
33 GAO C X, TAO S M, HE Y Y, et al. Effect of population migration on spatial carbon emission transfers in China[J]. Energy Policy,2021,156. DOI:10.1016/J.ENPOL.2021. 112450
doi: 10.1016/J.ENPOL.2021. 112450
34 LI J B, HUANG X J, CHUAI X W, et al. The impact of land urbanization on carbon dioxide emissions in the Yangtze River Delta, China: A multiscale perspective[J]. Cities, 2021, 116.DOI:10.1016/J.CITIES.2021.103275
doi: 10.1016/J.CITIES.2021.103275
35 Building characteristic industrial clusters, building a modern aviation new city, national Shaanxi aviation economic and technological development zone, Xi'an Yanliang National Aviation high tech industrial base [J]. Electronic technology, 2012, 25(3):127.打造特色产业集群建设现代航空新城国家级陕西航空经济技术开发区西安阎良国家航空高技术产业基地[J].电子科技, 2012, 25(3):127.
36 LI Ni. "Made in Gaoling" to "intelligent made in Gaoling"[N]. Shaanxi Daily, 2020-12-02(011).
36 李妮.“高陵制造”驶向“高陵智造”[N]. 陕西日报, 2020-12-02(011).
37 MA Jingfu. Empirical study on environmental Kuznets curve of carbon emission in Liaoning Province[J]. Energy Conservation, 2021, 40(5):58-62.
37 马景富.辽宁省碳排放的环境库兹涅茨曲线实证研究[J].节能, 2021, 40(5):58-62.
[1] 陈吉臻,张君,薛亮. 基于夜间灯光数据的陕西省县域相对贫困水平时空差异分析[J]. 遥感技术与应用, 2022, 37(4): 908-918.
[2] 刘贤赵,杨旭. 夜间灯光数据估算中国省域碳排放与国际碳数据库分配的碳排放比较[J]. 遥感技术与应用, 2022, 37(2): 319-332.
[3] 张爱华,潘耀忠,明艳芳,王金云. 多源信息耦合的GDP空间化研究—以北京市为例[J]. 遥感技术与应用, 2021, 36(2): 463-472.
[4] 郭雨臣,黄金川,林浩曦. 多源数据融合的中国人口数据空间化研究[J]. 遥感技术与应用, 2020, 35(1): 219-232.
[5] 白贺庭, 马明国, 阎然, 刘康甯, 隽楚涵. 基于夜间灯光数据的重庆市城市扩张研究[J]. 遥感技术与应用, 2019, 34(1): 216-224.
[6] 赵峰,汪云甲,闫世勇. 时序InSAR技术地表沉降监测结果可靠性及沉降梯度分析[J]. 遥感技术与应用, 2015, 30(5): 969-979.
[7] 王珂靖,蔡红艳,杨小唤,张远. 基于城镇居民用地再分类的人口数据空间化方法研究—以长江中游4省为例[J]. 遥感技术与应用, 2015, 30(5): 987-995.
[8] 舒松,余柏蒗 ,吴健平,刘红星. 基于夜间灯光数据的城市建成区提取方法评价与应用[J]. 遥感技术与应用, 2011, 26(2): 169-176.
[9] 王雪梅,李 新,马明国. 基于遥感和GIS的人口数据空间化研究进展及案例分析[J]. 遥感技术与应用, 2004, 19(5): 320-327.