Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (4): 903-912    DOI: 10.11873/j.issn.1004-0323.2023.4.0903
数据与图像处理     
星载多普勒雷达云中大气风场测量仿真研究
刘顺飞1,2(),朱迪1,董晓龙1,2()
1.中国科学院国家空间科学中心,北京 101400
2.中国科学院大学,北京 100049
Study and Simulation on Measurement of Atmospheric Wind Field in Cloud by Spaceborne Doppler Radar
Shunfei LIU1,2(),Di ZHU1,Xiaolong DONG1,2()
1.National Space Science Center,Chinese Academy of Sciences,Beijing 101400,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
 全文: PDF(5349 KB)   HTML
摘要:

全球风廓线的测量对提高数值天气预报精度,准确描述气候模型,理解大气中的物理过程具有重要意义。云雨条件下,星载大气风场多普勒速度测量能力依赖于雷达系统参数、云的物理和动力特征及测量方法。基于极化分集脉冲对(Polarization Diversity Pulse-Pair, PDPP)算法,研究了脉冲时序和多普勒速度测量精度的关系。对影响PDPP方法多普勒测量精度的因素进行了仿真分析。结果表明,对W波段雷达,脉冲对重复频率应当在3.5~5 KHz范围。使用0.1°波束宽度的天线在脉冲间隔为30~50 us区间内,能对反射率因子-20 dBZ的云内风速进行测量,精度在1.35 m/s;相同精度要求下,0.2°波束宽度的天线在脉冲间隔为30~40 us范围内,能达到探测灵敏度约-12 dBZ。

关键词: 云内大气风场极化分集脉冲对算法PRF设计多普勒测量    
Abstract:

Global wind profile plays a critical role in improving accuracy of numerical weather prediction, accurately describing climate models and understanding the atmospheric physical processes. Under cloud and rain conditions, the Doppler velocity measurement ability of spaceborne atmospheric wind field is highly dependent on radar system parameters, the physical and dynamic characteristics of cloud and measurement method. Based on Polarization Diversity Pulse Pair (PDPP) algorithm, the relationship between pulse timing and Doppler velocity measurement accuracy is studied. The factors affecting the Doppler measurement accuracy of PDPP method are simulated and analyzed. The results show that for W-band radar, the pulse pair repetition frequency should be in the range of 3.5~5 kHz. The antenna with 0.1 ° beam width can measure the in-cloud wind speed with reflectivity factor of about -20dBz in the pulse interval of 30~50 μs, and the accuracy is 1.35 m/s; Under the same accuracy requirements, the antenna with 0.2° beam width can achieve detection sensitivity of about -12 dBz in the range of pulse interval of 30~40 μs.

Key words: Atmospheric wind field in cloud    Polarization diversity pulse pair algorithm    PRF design    Doppler measurement
收稿日期: 2022-03-10 出版日期: 2023-09-11
ZTFLH:  P415.2  
基金资助: 空间科学预先研究项目“星载毫米波云雷达多普勒信号探测技术研究”(XDA15018600);空间科学预先研究项目“星载毫米波云雷达多普勒信号探测技术研究”(XDA15018600)
通讯作者: 董晓龙     E-mail: m15971270145@163.com;dongxiaolong@mirslab.cn
作者简介: 刘顺飞(1997-),男,湖南邵阳人,硕士研究生,主要从事微波遥感探测等方面的研究。E?mail:m15971270145@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘顺飞
朱迪
董晓龙

引用本文:

刘顺飞,朱迪,董晓龙. 星载多普勒雷达云中大气风场测量仿真研究[J]. 遥感技术与应用, 2023, 38(4): 903-912.

Shunfei LIU,Di ZHU,Xiaolong DONG. Study and Simulation on Measurement of Atmospheric Wind Field in Cloud by Spaceborne Doppler Radar. Remote Sensing Technology and Application, 2023, 38(4): 903-912.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.4.0903        http://www.rsta.ac.cn/CN/Y2023/V38/I4/903

图1  传统脉冲对时序和PDPP脉冲时序对比
图2  实现三维风速反演的观测几何
参数符号说明单位数值
λ波长mm3.2
Pt发射峰值功率W1800
τ脉冲宽度μs3.3
Θ俯仰向波束宽度°0.1~0.2
Φ方位向波束宽度°0.1~0.2
Fn噪声系数dB5
B接收带宽MHz0.36
T绝对温度K290
L系统损耗dB4
表1  W波段雷达系统参数
图3  回波信噪比与反射率因子关系
图4  速度精度与反射率因子的关系
参数(m2/s2)方位角0°方位角90°
σmove27.7913.69
σr20.1~9.690.1~9.69
σvfob20.25~10.25~1
σws21~161~16
σtotal29.14~34.4815.04~44.38
表2  谱方差变化范围
图5  观测示意图
图6  不同方位角和俯仰角下的相关系数
图7  速度精度与谱宽的关系
图8  速度精度与波束宽度的关系
图9  受LDR影响的速度精度和脉冲间隔的关系
图10  速度精度和脉冲间隔的关系
图11  速度精度与PRT的关系
1 ILLINGWORTH A J, BATTAGLIA A, BRADFORD J, et al. Wivern:A new satellite concept to provide global in-cloud winds,precipitation, and cloud properties[J].Bulletin of the American Meteorological Society,2018,99(8):1669-1687.
2 BAKER E W. Lidar-measured wind profiles: The missing link in the global observing systems[J] Bulletin of the American Meteorological Society,2014,95(4):543–564.
3 MCNALLY A P. A note on the occurrence of cloud in meteorologically sensitive areas and the implications for advanced infrared sounders [J]. Quarterly Journal of the Royal Meteorological Society, 2002, 128(585): 2551-2556.
4 BATTAGLIA A, DHILLON R, ILLINGWORTH A. Doppler W-band polarization diversity spaceborne radar simulator for wind studies [J]. Atmospheric Measurement Techniques, 2018, 11(11): 5965-5979.
5 DOVIAK R J, SIRMANS D. Doppler Radar with Polarization Diversity[J]. Journal of Atmospheric Sciences 1973, 30(4): 737-738
6 BATTAFLIA A, WOLDE M, ILLINGWORTH A, et al. Implementation of polarization diversity pulse-pair technique using airborne W-band radar[J]. Atmospheric Measurement Techniques, 2019, 12(1): 253-269.
7 ZHANG Peichang. Radar Meteorology[M]. Beijing: Meteorological Press, 1988.
7 张培昌. 雷达气象学[M]. 北京:气象出版社, 1988.
8 KOBAYASHI S, KUMAGAI H, KUROIWA H. A proposal of pulse-pair doppler operation on a Spaceborne Cloud-Profiling Radar in the W band[J]. Journal of Atmospheric and Oceanic Technology,2002,19(9):1294-1306.
9 ZRINC. Spectral moment estimates from correlated pulse pairs[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, AES-13(4): 344-354.
10 AMAYENC, PAUL, TESTUD, et al. Proposal for a Spaceborne Dual-Beam Rain Radar with doppler capability[J]. Journal of Atmospheric and Oceanic Technology,1993,10(3): 262-276
11 PAZMANY A L, GALLOWAY J C, MEAD J B, et al. Polarization diversity pulse-pair technique for Millimetre-Wave Doppler Radar measurements of severe storm features[J]. Journal of Atmospheric and Oceanic Technology, 1998, 16(12): 1900-1911.
No related articles found!