Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (4): 956-966    DOI: 10.11873/j.issn.1004-0323.2023.4.0956
遥感应用     
基于三维激光扫描技术的马尾松冠层孔隙度研究
严夏帆1,2(),赵文凯1,2,杨舜成3,林灵辰1,2,刘健1,2,余坤勇1,2()
1.福建农林大学林学院,福建 福州 350002
2.3S技术与资源优化利用福建省高校重点实验室,福建 福州 350002
3.福建省水土保持试验站,福建 福州 350002
Canopy Porosity of Masson Pine based on Terrestrial 3D Laser Scanning
Xiafan YAN1,2(),Wenkai ZHAO1,2,Shuncheng YANG3,Lingchen LIN1,2,Jian LIU1,2,Kunyong YU1,2()
1.College of Forestry,Fujian Agriculture and Forestry University,Fuzhou 350002,China
2.Fujian Province Key Laboratory of 3S Technology and Optimal Utilization of Resources,Fuzhou 350002,China
3.Soil and Water Conservation Test Station,Fuzhou 350002,China
 全文: PDF(3463 KB)   HTML
摘要:

三维激光扫描技术具有扫描快、对树木无损害、高度还原树木原形等优势,为三维样木重构、树木冠层结构研究及森林资源连年监测研究提供精确的数据。以马尾松为对象,利用三维激光扫描仪获取30株单木点云数据,运用体素化、平面投影和凸包算法等,计算单木冠层孔隙度。结合分层理论,通过与树木生长参数(冠幅、冠体积和冠高度)的相关性分析,构建全冠与不同分层方式提取的冠层孔隙度建立多元线性回归模型,以决定系数(R2)、均方根误差(RMSE)、相对分析误差(RPD)和总体精度(TA)确定冠层孔隙度提取的最佳体素边长和最佳分层方式。结果表明:冠层孔隙度提取的最佳的分层方式为冠层形态三分层(R2为0.74);冠层形态三分层、冠层形态三分层五分层结合、冠层高度三等分层提取的冠层孔隙度与树木生长参数的影响最为稳定;根据冠层形态分层提取的孔隙度适用于冠层形态差异较大,而冠层形态较一致时,采用冠层高度三等分层是较为合适,精度较高。

关键词: 马尾松冠层孔隙度体素化三维激光扫描仪分层理论    
Abstract:

The terrestrial 3D laser scanning technology has the advantages of fast scanning, no damage to trees, and high restoration of the original shape of trees, which provides accurate data for 3D sample wood reconstruction, tree canopy structure research, and forest resource monitoring research on a continuous basis. With the Masson pine as the object, the 3D laser scanner was used to obtain point cloud data of 30 single trees, and the voxelization, planar projection and convex packet algorithm were applied to calculate the porosity of single wood canopy. Combined with the theory of stratification, through the correlation analysis with tree growth parameters (crown width, crown volume and crown height), a multiple linear regression model was established for the canopy porosity extracted from the full crown and different stratification methods, and the coefficient of determination (R2), Root Mean Square Error (RMSE), Residual Predictive Deviation (RPD), and Total Accuracy (TA) to determine the optimal voxel side length and optimal stratification for canopy porosity extraction. The results show that the best stratification method for canopy porosity extraction is to divide canopy shape into three layers (R2 is 0.74); The effects of canopy porosity and tree growth parameters extracted by three-level stratification are the most stable; the porosity extracted according to canopy shape stratification is suitable for large differences in canopy shape, and when the canopy shape is relatively consistent, the canopy height is used. The third-level stratification is more suitable and has higher precision.

Key words: Masson pine (Pinus massoniana    Canopy porosity    Voxelization    Terrestrial laser scanner    layering theory
收稿日期: 2022-01-19 出版日期: 2023-09-11
ZTFLH:  TP79  
基金资助: 福建省水利厅科技项目(MSK202106);国家自然科学基金面上项目(32271876);福建省森林资源智慧监测和碳汇计量关键技术研究(2022FKJ03);3S技术与资源优化利用福建省高校重点实验室建设项目(PTJH17014)
通讯作者: 余坤勇     E-mail: 982223240@qq.com;yuyky@126.com
作者简介: 严夏帆(1994-),女,福建仙游人,硕士研究生,主要从事森林资源经营管理研究。E?mail:982223240@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
严夏帆
赵文凯
杨舜成
林灵辰
刘健
余坤勇

引用本文:

严夏帆,赵文凯,杨舜成,林灵辰,刘健,余坤勇. 基于三维激光扫描技术的马尾松冠层孔隙度研究[J]. 遥感技术与应用, 2023, 38(4): 956-966.

Xiafan YAN,Wenkai ZHAO,Shuncheng YANG,Lingchen LIN,Jian LIU,Kunyong YU. Canopy Porosity of Masson Pine based on Terrestrial 3D Laser Scanning. Remote Sensing Technology and Application, 2023, 38(4): 956-966.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.4.0956        http://www.rsta.ac.cn/CN/Y2023/V38/I4/956

图1  研究区位置图(审图号:GS(2019)1822)
标准地号平均胸径/cm平均树高/m平均冠长/m平均冠幅/m郁闭度标准地号平均胸径/cm平均树高/m平均冠长/m平均冠幅/m郁闭度
17.86.13.92.60.57106.18.12.52.30.50
29.16.43.12.90.68116.58.43.33.50.68
38.86.74.23.60.42128.47.83.42.40.62
48.18.55.24.60.51136.06.32.52.60.67
58.97.95.14.20.64148.37.64.72.70.57
68.78.04.84.30.61157.86.63.42.50.46
77.47.24.72.80.83166.97.94.33.80.77
88.08.14.73.90.61178.86.83.23.60.66
98.28.54.23.50.74189.36.93.71.70.59
表1  标准地基本情况
图2  地基雷达扫描站点示意图
图3  冠层孔隙度提取涉及的区域表示
图4  不同尺度因子的叶面积指数(LAI)实测值与估测值比较
序号体素边长(mm)孔隙度序号体素边长(mm)孔隙度序号体素边长(mm)孔隙度
1180.5311190.5521240.51
2280.6012340.6222180.53
3270.5913320.6623250.54
4250.5914360.6124370.62
5220.4715220.5425360.57
6210.5016260.5226330.57
7230.5217310.5827350.63
8310.5318200.5228260.50
9240.5319250.4529310.67
10220.5720240.5430230.52
表2  最适体素边长及冠层孔隙度
图5  冠层点云分层示意图
序号层数序号层数序号层数
abcdeabcdeabcde
10.760.650.69110.900.920.800.700.52210.790.790.60
20.860.710.80120.830.870.800.670.29220.740.770.790.740.69
30.820.820.67130.820.780.52230.690.690.61
40.900.730.830.820.87140.910.900.840.760.61240.940.820.72
50.730.630.81150.770.830.840.650.23250.880.860.780.690.55
60.630.840.70160.530.780.870.710.78260.850.860.860.820.65
70.730.680.75170.900.890.760.830.65270.540.840.840.750.64
80.910.820.790.750.73180.700.710.71280.850.860.820.710.72
90.770.800.67190.540.750.710.780.80290.910.880.68
100.850.900.870.720.78200.810.710.68300.840.790.830.740.51
表3  冠层点云按冠层形态分层提取的孔隙度
类别多元线性回归模型
冠层形态三分层提取孔隙度y=0.209 96+0.497 15a+0.136 97b-0.210 4c
冠层形态五分层提取孔隙度y=-0.257 67+0.002 5a+0.250 15b+0.447 15c+0.421 4d-0.118 56e
冠层形态三五分层结合提取孔隙度y=0.263 71+0.1435 8a+0.275 84b-0.038 8c-0.002 74d-0.030 99e
冠层高度三等分层提取孔隙度y=-0.190 64+0.191 88a+0.541 46b+0.265 94c
冠层高度五等分层提取孔隙度y=-0.093 34-0.029 01a+0.268 53b+0.333 24c+0.278 47d-0.056 01e
冠层高度十等分层提取孔隙度

y=-0.304 39+0.017 36a+0.004 02b+0.160 11c+0.076 98d+0.375 62e-0.074 21f+0.549 87g-

0.001 76h+0.029 64i-0.170 29j

表4  各类别多元线性回归模型
图6  各类别冠层孔隙度多元线性模型比较
类别NPearson相关性(r
冠体积冠高度冠幅
冠层孔隙度300.372*0.528**0.406*
冠层形态三分层提取孔隙度140.550*0.5190.579*
冠层形态五分层提取孔隙度160.3890.504*0.364
冠层形态三五分层结合提取孔隙度300.425*0.471**0.416*
冠层高度三等分层提取孔隙度300.475**0.469**0.486**
冠层高度五等分层提取孔隙度300.3230.497**0.302
冠层高度十等分层提取孔隙度300.367*0.507**0.346
表5  冠幅、冠高度、冠体积与冠层孔隙度相关性分析
类别多元线性回归模型R2
冠层孔隙度Q=0.395+0.000V+0.023CH+0.007CW0.29
冠层形态三分层提取孔隙度Q=0.353-0.008V+0.008CH+0.050CW0.37
冠层形态五分层提取孔隙度Q=0.526+0.016V+0.017CH-0.042CW0.30
冠层形态三五分层结合提取孔隙度Q=0.525+0.011V+0.013CH-0.027CW0.28
冠层高度三等分层提取孔隙度Q=0.470+0.006V+0.012CH-0.004CW0.28
冠层高度五等分层提取孔隙度Q=0.550+0.017V+0.022CH-0.054CW0.32
冠层高度十等分层提取孔隙度Q=0.555+0.020V+0.023CH-0.062CW0.33
表6  各类别多元线性回归模型
1 ANDRIEU B, SINOQUET H.Evaluation of structure description requirements for predicting gap fraction of vegetation canopies[J]. Agricultural and Forest Meteorology,1993,65(3-4):207-227.
2 LIU Xuan, QU Haiyan, WANG Kang, et al. Study on the canopy porosity of three kinds of roadside trees in Shenyang [J]. Journal of Northwest Forestry University, 2021, 36(2): 54-60,219.
2 刘璇, 屈海燕, 王康, 等. 沈阳市3种行道树冠层孔隙度研究[J]. 西北林学院学报, 2021, 36(2): 54-60,219.
3 LI Hui, YANG Hua, XIE Rong. Canopy characteristics of spruce fir forest in Changbai Mountain and its relationship with young seedlings [J]. Journal of Beijing Forestry University, 2021, 43(7): 54-62.
3 李晖, 杨华, 谢榕. 长白山云冷杉林林隙冠层特征及与幼苗幼树的关系[J]. 北京林业大学学报, 2021, 43(7): 54-62.
4 YAO Xiong, YU Kunyong, DENG Yangbo, et al. Spatial distribution of soil organic carbon stocks in Masson pine ( Pinus massoniana ) forests in subtropical China[J]. Catena, 2019, 178:189-198.
5 GUO Hui. Research on the extraction method of forest canopy porosity [D]. Harbin: Northeast Forestry University, 2016.
5 郭慧. 森林冠层孔隙度提取方法研究[D]. 哈尔滨:东北林业大学, 2016.
6 GUO Libiao, LIU Guixiang, YUN Xiangjun, et al.Vegetation Leaf Area Index (LAI) retrieval based on data-based mechanistic model using remote sensing data[J].Remote Sensing Technology and Application, 2020, 35(5):1047-1056.
6 郭利彪,刘桂香,运向军,等.基于数据机理的植被叶面积指数遥感反演研究[J].遥感技术与应用, 2020, 35(5): 1047-1056.
7 CHU Hongliang, XIAO Qing, BAI Junhua, et al. The retrieval of Leaf Area Index based on remote sensing by unmanned aerial vehicle[J]. Remote Sensing Technology and Application, 2017, 32(1): 140-148.
7 褚洪亮,肖青,柏军华,等.基于无人机遥感的叶面积指数反演[J].遥感技术与应用,2017,32(1):140-148.
8 SONG Jiayin. Research on the inversion method of forest canopy Leaf Area Index using hemispheric images [D]. Harbin: Northeast Forestry University, 2017.
8 宋佳音. 利用半球图像反演森林冠层叶面积指数的方法研究[D]. 哈尔滨: 东北林业大学, 2017.
9 GAO Jiqing, YUN Ting, XUE Lianfeng. Calculation of true Leaf Area Index based on Fish-Eye camera and ground Lidar[J]. Journal of Nanjing Normal University(Natural Science Edition), 2014, 37(4): 137-144.
9 高纪青, 云挺, 薛联凤. 基于鱼目摄像和地面激光雷达的真实叶面积指数计算[J]. 南京师大学报(自然科学版), 2014, 37(4): 137-144.
10 WANG Jia, ZHANG Fangfei, GAO He, et al. Extraction of single tree canopy structure factors by ground-based lidar [J]. Journal of Agricultural Machinery, 2018, 49(2): 199-206.
10 王佳, 张芳菲, 高赫, 等. 地基激光雷达提取单木冠层结构因子研究[J]. 农业机械学报, 2018, 49(2): 199-206.
11 INIAN M, MILLER John R, HU B X, et al. Retrieving crown Leaf Area Index from an individual tree using ground-based Lidar data[J]. Canadian Journal of Remote Sensing, 2008, 34(3):320-332.
12 ZHENG Guang, Monika MOSKAL L. Leaf orientation retrieval from Terrestrial Laser Scanning(TLS) data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3970-3979.
13 ZHENG G, MOSKAL L M. Computational-geometry-based retrieval of effective Leaf Area Index using terrestrial laser scanning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3958-3969.
14 ZHENG G, MOSKAL L M, KIM S-H. Retrieval of effective Leaf Area Index in heterogeneous forests with terrestrial laser scanning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 51(2): 777-786.
15 LUO Yubo, HUANG Hongyu, TANG Liyu, et al. Tree height and diameter extraction with 3 d reconstruction in a forest based on TLS[J]. Remote Sensing Technology and Application, 2019, 34(2): 243-252.
15 骆钰波,黄洪宇,唐丽玉,等.基于地面激光雷达点云数据的森林树高、胸径自动提取与三维重建[J].遥感技术与应用,2019,34(2):243-252.
16 HOSOI F K, OMASA K J. Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning lidar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3610-3618.
17 PIEGL Les A, TILLER W Y. Algorithm for finding all k nearest neighbors[J]. Computer-Aided Design, 2002, 34(2):167-172.
18 KUUSK A, PISEK J, LANG M,et al. Estimation of gap fraction and foliage clumping in forest canopies[J]. Remote Sensing, 2018, 10(7):1153.DOI:10.3390/rs10071153
doi: 10.3390/rs10071153
19 YANGQuanyue, CHEN Zhibo, SUN Guodong. Automatic extraction of tree measurement factors based on point cloud data[J]. Journal of Agricultural Machinery, 2017, 48(8): 179-185.
19 杨全月, 陈志泊, 孙国栋. 基于点云数据的测树因子自动提取方法[J]. 农业机械学报, 2017, 48(8): 179-185.
20 PFEIFFER S A, GUEVARA J, CHEEIN F A, et al. Mechatronic terrestrial LiDAR for canopy porosity and crown surface estimation[J]. Computers and Electronics in Agriculture, 2018, 146:104-113.
21 ZHANG Yue. Simulation of vegetation productivity in the Shitou River Basin of Qinling and its response to climate change based on Biome-BGC model[D]. Xi'an: Northwestern University, 2019.
21 张越. 基于Biome-BGC模型的秦岭石头河流域植被生产力模拟及其对气候变化的响应研究[D].西安:西北大学,2019.
22 MENG Yuan. Estimation of tree canopy parameters based on ground 3D laser scanning technology[D]. Harbin: Northeast Forestry University,2017.孟园.基于地面三维激光扫描技术的树冠参数的估测研究[D].哈尔滨:东北林业大学,2017.
23 JUHA K, MATTI M, RTTERI P P. Effect of flflying altitude, scanning angle and scanning mode on the accuracy of ALS based forest inventory[J]. Internatinal Journal of Applied Earth Observation and Geoinformation. 2016, 52:349-360.DOI:10.1016/j.jag.2016.07.005
doi: 10.1016/j.jag.2016.07.005
24 TAURI A, LANG M. Estimation of canopy cover in dense mixed-species forests using airborne Lidar data[J]. European Journal of Remote Sensing,2018,51,132-141.DOI:10.1080/22797254.2017.1411169
doi: 10.1080/22797254.2017.1411169
25 WANG Xiangyu, XIE Donghui, WANG Yan, et al. 3D reconstruction of a single tree from terrestrial laser scanner data[J]. Remote Sensing Technology and Application, 2015, 30(3): 455-460.
25 王向玉,谢东辉,汪艳,等.基于地面激光雷达点云数据的单木三维重建[J].遥感技术与应用,2015,30(3):455-460.
26 WANG Shaoteng, GENG Jun, TU Lili, et al. Study on the influence of semiellipsoidal crown on crown gap ratio and aggregation index[J]. National Remote Sensing Bulletin,2021,25(10): 2103-2115
26 王少腾,耿君,涂丽丽,等.半椭球形树冠对冠层间隙率与聚集度指数的影响研究[J].遥感学报,2021,25(10):2103-2115.
[1] 王 震,张晓丽,安树杰. 松材线虫病危害的马尾松林木光谱特征分析[J]. 遥感技术与应用, 2007, 22(3): 367-370.