Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (4): 967-977    DOI: 10.11873/j.issn.1004-0323.2023.4.0967
遥感应用     
基于SBAS-InSAR方法的岷江上游峡谷区地表沉降的坡向分异规律研究
肖洪敏1(),张文江1(),田云锋2,蒋蕙如1,朱强3
1.四川大学水利水电学院,四川 成都 610065
2.应急管理部国家自然灾害防治研究院,北京 100085
3.中国长江三峡集团有限公司信息中心,北京 100038
Controls Underlying the Aspect Pattern of SBAS-InSAR Retrieved Surface Subsidence in the Upper Minjiang Basin
Hongmin XIAO1(),Wenjiang ZHANG1(),Yunfeng TIAN2,Huiru JIANG1,Qiang ZHU3
1.College of Water Resources and Hydropower,Sichuan University,Chengdu 610065,China
2.National Institute of Natural Hazards Prevention,Ministry of Emergency Management,Beijing 100085,China
3.Information Center,China Three Gorges Corporation,Beijing 100038,China
 全文: PDF(6772 KB)   HTML
摘要:

岷江上游峡谷区滑坡等地质灾害频发,认识灾害的分布特征及诱因对于减小灾害损失具有重要意义。基于2015~2019年的60景哨兵一号(Sentinel-1A)卫星雷达影像,采用小基线集合成孔径雷达干涉测量(SBAS-InSAR)方法获取了地表雷达视线向形变的时间序列及多年平均速率,分析了地表沉降的分布规律及其同植被覆盖、降水、人类活动等因子的内在联系。结果表明:研究区地表沉降具有明显的坡向分异规律,即快速沉降区多分布于阳坡,年平均沉降速率(-33.02 mm/a)明显快于阴坡(-9.33 mm/a)。针对该地表沉降的坡向分异规律,研究进一步揭示了其环境控制机制:①阳坡水分条件胁迫较强而植被覆盖差,不利于地表稳定;②地形雨来向多为偏南方向,阳坡受侵蚀较为强烈;③阳坡光热条件好,受垦殖等人类活动影响大。由此建议:在岷江上游峡谷区的偏南向边坡,应特别注意防范滑坡等灾害,加强地表形变监测和滑坡灾害预警。

关键词: 地表沉降干涉合成孔径雷达坡向差异水热条件岷江上游    
Abstract:

The Upper Minjiang Basin, in the eastern Tibetan Plateau, is characterized by complex rugged terrains, so it was vulnerably subjected to surface subsidence related hazards. Therefore, it was quite beneficial and necessary to explore the controls underlying subsidence for disaster mitigation and avoidance. In the study, totally 60 Sentinel-1A images were chosen to detect possible surface subsidence from 2015 to 2019 with the interferometric synthetic aperture radar (InSAR) method in the study area, and then the factors underlying the subsidence were discussed. The results showed that south (sunny) slopes experienced the higher subsidence rate (averagely -33.02 mm/a) than the north (-9.33 mm/a) though with similar elevation and slope degree. The spatial patterns of subsidence could be attributed the terrain aspect related factors. The sparse vegetation cover on sunny slopes due to severer water deficit provided the weak protection to surface stability, and the physical erosion induced by the northward orographic rain was also not beneficial to the stability of south slopes. In addition, sunny slopes abundant in solar energy were subjected to more human activities such as farming and building, which also could weaken surface stability. Our study emphasized the distinct vulnerability in surface stability of south slopes in this region, which should be carefully taken into account in land developing as so to avoid causing landslides.

Key words: Surface subsidence    InSAR    Aspect variation    Water/heat conditions    Upper Minjiang Basin
收稿日期: 2021-01-13 出版日期: 2023-09-11
ZTFLH:  P237  
基金资助: 国家自然科学基金面上项目(41771112)
通讯作者: 张文江     E-mail: xhm1996sc@163.com;zhangwj@lreis.ac.cn
作者简介: 肖洪敏(1996-),女,四川德阳人,硕士研究生,主要从事地质灾害研究。E?mail: xhm1996sc@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
肖洪敏
张文江
田云锋
蒋蕙如
朱强

引用本文:

肖洪敏,张文江,田云锋,蒋蕙如,朱强. 基于SBAS-InSAR方法的岷江上游峡谷区地表沉降的坡向分异规律研究[J]. 遥感技术与应用, 2023, 38(4): 967-977.

Hongmin XIAO,Wenjiang ZHANG,Yunfeng TIAN,Huiru JIANG,Qiang ZHU. Controls Underlying the Aspect Pattern of SBAS-InSAR Retrieved Surface Subsidence in the Upper Minjiang Basin. Remote Sensing Technology and Application, 2023, 38(4): 967-977.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.4.0967        http://www.rsta.ac.cn/CN/Y2023/V38/I4/967

图1  研究区位置及GNSS站分布
图2  干涉对时空基线
图3  GNSS与InSAR形变速率监测结果比较
图4  研究区雷达视线(LOS)方向形变速率(负值表示沉降)
图5  研究区坡面形变速率Vslope(负值表示沿坡面方向下滑)
图6  研究区和快速沉降点的坡向和坡度特征
图7  典型形变区沉降-高程分布及谷歌影像截图和所有形变点的坡度分布
阳坡阴坡
Vslope /(mm/a)林地灌丛草地作物Vslope /(mm/a)林地灌丛草地作物
形变区1-60.9610%14%76%--7.9485%7%3%5%
形变区2-21.606%18%56%20%-6.6986%2%12%-
形变区3-33.619%19%47%25%-7.8687%-13%-
形变区4-24.043%85%12%-13.4071%11%18%1%
形变区5-25.49--100%--6.4634%47%19%-
形变区6-38.292%23%49%26%-17.2493%4%3%-
形变区7-29.3711%12%50%26%-11.55100%---
平均值*-33.0210%10%62%18%-9.3384%7%7%2%
表 1  典型形变区的植被分布(面积占比)
图8  典型形变区沉降速率—植被覆盖因子(C)散点图
年降水量/mm6~9月降水量比重≥10 mm/日降水的累积量比重
都江堰118676%69%
黑水82267%54%
松潘71067%45%
若尔盖64181%50%
表2  研究区气象站的降水特征
1 ZHU Aiyu, ZHANG Dongning, ZHU Tao,et al.Influence of mantle convection to the crustal movement pattern in the Northeastern Margin of the Tibetan Plateau based on numerical simulation[J].Scientia Sinica(Terrae),2019,49(2):353-367.
1 祝爱玉,张东宁,朱涛,等.地幔对流拖曳力影响青藏高原东北缘地壳运动格局的数值模拟研究[J].中国科学:地球科学,2019,49(2):353-367.
2 JIN Jijun, GUO Changbao, SHEN Yaqi,et al. Development characteristics and deformation monitoring analysis of the Zhou-changping landslide in Maoxian County,Sichuan Province[J]. Geoscience: 2021,35(1):103-113.金继军,郭长宝,沈亚麒,等. 四川茂县周场坪滑坡发育特征与变形监测分析[J]. 现代地质:2021,35(1):103-113.
3 CHI Weikang, LI Xiangxin, LI Pengfei.Reservoir slope deformation monitoring based on GPS[J].Geological Hazards and Environment Preservation,2018,29(1):9-12.
3 叱伟康,李向新,李鹏飞.基于GPS的山区水库边坡滑坡体变形监测[J].地质灾害与环境保护,2018,29(1):9-12.
4 YU Jiansheng, ZHAO Bin, TAN Kai,et al.Analysis of GNSS postseismic deformation of Wenchuan Earthquak[J].ActaGeodaetica et Cartographica Sinica,2018,47(9):1196-1206.
4 余建胜,赵斌,谭凯,等.汶川地震震后GNSS形变分析[J].测绘学报,2018,47(9):1196-1206.
5 LIU Guoxiang, CHEN Qiang, LUO Xiaojun,et al.InSAR Principle and Application[M].Beijing:Science Press,2019.刘国祥,陈强,罗小军,等.InSAR原理与应用[M].北京:科学出版社,2019.
6 MASSONNET D, FEIGL K, ROSSI M,et al.Radar interferometric mapping of deformation in the year after the landers earthquake[J].Nature,1994,369(6477):227-230.
7 BERARDINO P, COSTANTINI M, FRANCESCHETTI G,et al.Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata,Italy)[J].Engineering Geology,2003,68(1):31-51.
8 ZHANG Wei, YANG Siquan, WANG Lei,et al.Review on disaster reduction application potentiality of synthetic aperture radar[J].Remote Sensing Technology and Application,2012,27(6):904-911.
8 张薇,杨思全,王磊,等.合成孔径雷达数据减灾应用潜力研究综述[J].遥感技术与应用,2012,27(6):904-911.
9 WEI Congmin, GE Weipeng, SHAO Yanxiu,et al.Surface deformation field of eastern Gansu Province by PS-InSAR technique with Sentinel-1A[J].Remote Sensing Technology and Application,2020,35(4):864-872.
9 魏聪敏,葛伟鹏,邵延秀,等.利用Sentinel-1A合成孔径雷达干涉时间序列监测陇东地区地面沉降变形[J].遥感技术与应用,2020,35(4):864-872.
10 ZHANG Shijia, JIANG Jianjun, MIAO Yamin,et al.Application of the SBAS technique in potential landslide identification in the Minjiang Watershed[J].Mountain Research,2018,36(1):91-97.
10 张诗茄,蒋建军,缪亚敏,等.基于SBAS技术的岷江流域潜在滑坡识别[J].山地学报,2018,36(1):91-97.
11 MASSONNET D, FEIGL K L.Radar interferometry and its application to changes in the earth's surface[J].Reviews of Geophysics,1998,36(4):441-500.
12 ZHU Jianjun, LI Zhiwei, HU Jun.Research progress and methods of InSAR for deformation monitoring[J].Acta Geodaetica et Cartographica Sinica,2017,46(10):1717-1733.
12 朱建军,李志伟,胡俊.InSAR变形监测方法与研究进展[J].测绘学报,2017,46(10):1717-1733.
13 FRUNEAU B, ACHACHE J, DELACOURT C.Observation and modelling of the saint-tienne-de-Tinée landslide using SAR interferometry[J].Tectonophysics,1996,265(3):181-190.
14 BERARDINO P, FORNARO G, LANARI R,et al.A new algorithm for surface deformation monitoring based on small va-seline differential SAR interferograms[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375-2383.
15 XU Yahui.Time series ground motion monitoring before 6.24 Maoxian Xinmo landslide with Sentinel SAR data[D].Chengdu:Southwest Jiaotong University,2018.徐亚会.利用Sentinel卫星数据探测6.24茂县新磨村滑坡前时序地表运动特征[D].成都:西南交通大学,2018.
16 NIE Bingqi. Landslide deformation detection and identification based on InSAR technology—A case of Danba county[D].Chengdu:Chengdu University of Technology,2018.
16 聂兵其.基于InSAR的滑坡形变探测及隐患识别研究——以丹巴县城区为例[D].成都:成都理工大学,2018.
17 WANG Lei.Risk assessment of landslide in Li county based on GIS[D].Chengdu:Chengdu University of Technology,2013.
17 王磊.基于GIS的理县滑坡地质灾害风险性评价[D].成都:成都理工大学,2013.
18 WANG Jun, YU Yan, Guoqiang OU,et al.Flash flood risk zoning of areas hit by Wenchuan Earthquake in the upper reach of Minjiang River[J].Journal of Yangtze River Scientific Research Institute,2017,34(1):54-60.
18 王钧,宇岩,欧国强,等.岷江上游汶川地震重灾区山洪灾害危险分区研究[J].长江科学院院报,2017,34(1):54-60.
19 WEI Changli, ZHANG Ying, FENG Wenka,et al.Analysis of intensity and regularity of geohazards in upper reaches of Minjiang River[J].Journal of Engineering Geology,2019,27(3):640-650.
19 魏昌利,张瑛,冯文凯,等.岷江上游地质灾害发育强度与规律分析[J].工程地质学报,2019,27(3):640-650.
20 MAO Shuo.Hazard assessment of landslide geological disaster in Xuecheng area based on GIS[D]. Chengdu:Chengdu University of Technology,2016.
20 毛硕.基于GIS的薛城地区滑坡地质灾害危险性评价[D].成都:成都理工大学,2016.
21 REN Sanshao. Research on the development characteristics and formation mechanism of damming landslides at Alpine Canyon area in the upper reaches of the Minjiang River[D].Beijing:China University of Geosciences,2018.
21 任三绍.岷江上游高山峡谷区堵江滑坡发育特征与形成机理研究[D].北京:中国地质大学,2018.
22 WANG Chaoyang.Study on the relationship between aspect and slope stability[D].Kunming:Kunming University of Science and Technology,2008.
22 王朝阳.坡向与斜坡稳定性的关系研究[D].昆明:昆明理工大学,2008.
23 XIONG Qianying. Based on 1∶50 000 feological hazard mapping of regional geological hazards and risk assessment and regionalization—Shigeru to Brunei Qiang Autonomous County as an example[D]. Chengdu:Chengdu University of Technology,2015.熊倩莹.基于1∶5万地质灾害填图的区域地质灾害易发性及危险性的评价与区划——以茂汶羌族自治县幅为例[D].成都:成都理工大学,2015.
24 ZHENG Jie, FENG Wenlan, WANG FengJie,et al.Spatial definition and its range variation of arid valley in the upper reaches of Minjiang River[J].Arid Land Geography,2017,40(3):541-548.
24 郑杰,冯文兰,王凤杰,等.岷江上游干旱河谷范围的界定及其变化分析[J].干旱区地理,2017,40(3):541-548.
25 MENG Guocai, MA Dongtao, WANG Shige,et al. Land eco-environment problems and its driving forces in the upper reaches of the Minjiang River[J].Arid Land Geography,2007,30(5):759-765.
25 孟国才,马东涛,王士革,等.岷江上游地区环境问题及其驱动力[J].干旱区地理,2007,30(5):759-765.
26 ZHANG Shijia.Application of the SBAS technique in landslide identification in the Minjiang Watershed[D]. Nanjing:Nanjing Normal University,2017.
26 张诗茄.基于SBAS技术的岷江流域滑坡识别方法研究[D].南京:南京师范大学,2017.
27 KANG Ya, ZHAO Chaoying, ZHANG Qin,et al.Research on the InSAR technique of landslide detection:A case study of Wudongde Hydropower station section,Jinshajiang[J].Journal of Geodesy and Geodynamics,2018,38(10):67-71.
27 康亚,赵超英,张勤,等.InSAR滑坡探测技术研究:以金沙江乌东德水电站段为例[J].大地测量与地球动力学,2018,38(10):67-71.
28 HU Bo, WU Yang, WEI Dehong,et al.Surface deformation Monitoring after Jiuzhaigou earthquake based on SBAS technology[J].Engineering of Surveying and Mapping,2019,28(3):30-34.
28 胡波,吴洋,魏德宏,等.基于SBAS技术的九寨沟震后地表形变监测[J].测绘工程,2019,28(3):30-34.
29 DAI Keren, ZHUO Guanchen, XU Qiang,et al.Tracing the pre-failure two-dimensional surface displacements of Nanyu Landslide,Gansu Province with radar interferometry[J].Geomatics and Information Science of Wuhan University,2019,44(12):1778-1786.
29 戴可人,卓冠晨,许强,等.雷达干涉测量对甘肃南峪乡滑坡灾前二维形变追溯[J].武汉大学学报·信息科学版,2019,44(12):1778-1786.
30 CHEN Shu.Application of Sentinel-1 data in Co-seismic deformation and post-seismic deformation research[D].Beijing:Institute of Earthquake Science,China Earthquake Administratio,2018.
30 陈树.Sentinel-1数据在同震形变和震后形变研究中的应用[D].北京:中国地震局地震预测研究所,2018.
31 SANDWELL D, MELLORS R, TONG X,et al.Open radar interferometry software for mapping surface deformation[J].Eos Transactions American Geophysical Union,2011,92(28):234-234.
32 TONG X, SANDWELL D T, SMITH-KONTER B.High-resolution interseismic velocity data along the San andreas fault from GPS and InSAR[J].Journal of Geophysical Research:Solid Earth,2013,118(1):369-389.
33 CASCINI L, FORNARO G, PEDUTO D.Advanced low- and full-resolution DInSAR map generation for slow-moving Landslide analysis at different scales[J].Engineering Geology,2010,112(1):29-42.
34 COLESANTI C, WASOWSKI J.Investigating landslides with space-borne Synthetic Aperture Radar (SAR) Interferometry[J].Engineering Geology,2006,88(3):173-199.
35 WANG Yuwen, Mingshu JIE, Zhang Hongjiang. Effects of forests on slope stability in the Granite Mountainous area of the Three Gorges Reservoir Area[J]. Journal of Beijing Forestry University,1997,19(4): 9-13.
35 王玉杰,解明曙,张洪江.三峡库区花岗岩山地林木对坡面稳定性影响的研究[J].北京林业大学学报,1997,19(4):9-13.
36 LI Kai, SUN Yuedi, JIANG Baohua,et al. Analysis on spatial-temporal patterns of the vegetation coverage and landslides in Bailongjiang River basin based on the dimidiate pixel model[J]. Journal of Lanzhou University(Natural Sciences Edition),2014,50(3):376-382.
36 李凯,孙悦迪,江宝骅,等.基于像元二分法的白龙江流域植被覆盖度与滑坡时空格局分析[J].兰州大学学报(自然科学版),2014,50(3):376-382.
37 ZHANG Y, LIU B Y, ZHANG Q C,et al. Effect of different vegetation types on soil erosion by water[J].Acta Botanica Sinica,2003(10):1204-1209.
38 ZHAO Feng, WANG Yunjia, YAN Shiyong. Analysis of the reliability and subsidence gradient for the subsidence monitoring result of time-series InSAR[J].Remote Sensing Technology and Application,2015,30(5):969-979.
38 赵峰,汪云甲,闫世勇.时序InSAR技术地表沉降监测结果可靠性及沉降梯度分析[J].遥感技术与应用,2015,30(5):969-979.
39 XIE Shuai. Research on active landslide monitoring technology based on high resolution SAR image[D].Beijing: China University of Geosciences,2018.
39 谢帅.基于高分辨率SAR影像的活动性滑坡监测技术研究[D].北京:中国地质大学,2018.
40 CHEN Yulong. Monitoring and analyzing displacement of the Daguangbao landslide by multi-temporal InSAR[D].Chengdu:Southwest Jiaotong University,2019.
40 陈宇龙.基于时序InSAR的大光包滑坡位移监测与演化态势分析[D].成都:西南交通大学,2019.
41 WANG Dongsheng, LIU Hai. Characteristics analysis and stability study of Taoping landslide in Taoping township of Li County[J].Public Communication of Science & Technology,2011,3(4):119-120.
41 王东升,刘海.理县桃坪乡桃坪滑坡特征分析及稳定性研究[J].科技传播,2011,3(4):119-120.
42 HERRERA G, GUTI RREZ F, GARC A-DAVALILLO J C,et al.Multi-sensor advanced DInSARr monitoring of very slow landslides:The Tena Valley case study (Central Spanish Pyrenees)[J].Remote Sensing of Environment,2013,128(6):31-43.
43 WANG Zhanwei.Research on landslide identification method of Datong Countyin Qinghai based on SBAS-InSAR technology[D].Chengdu:Chengdu University of Technology,2019.
43 王战卫.基于SBAS-InSAR技术的青海大通县滑坡识别方法研究[D].成都:成都理工大学,2019.
44 LING Bing, YU Min.Sensitivity factors of slope gradient and slope direction of landslides in Daguan County,Yunnan[J].Urban Geology,2015,10(3):68-70.
44 凌炳,余敏.滑坡灾害坡度坡向敏感性分析研究:以云南大关县为例[J].城市地质,2015,10(3):68-70.
45 DU Guoliang, ZHANG Yongshuang, GAO Jinchuan,et al.Landslide susceptibility assessment based on GIS in Bailongjiang Watershed,Gansu Province[J].Journal of Geomechanics,2016,22(1):1-11.
45 杜国梁,张永双,高金川,等.基于GIS的白龙江流域甘肃段滑坡易发性评价[J].地质力学学报,2016,22(1):1-11.
46 ZHANG Yinguang, CHEN Jiwei, XU Yujiang.Classification and utilization of agricultural climatic resources in arid valleys in Southwest China[J].Resources Science,1989,11(3):1-6.
46 张谊光,陈纪卫,徐渝江.我国西南干旱河谷农业气候资源的分类与合理利用[J].资源科学,1989,11(3):1-6.
47 WEN Hao.Study on landslide recognition in Minjiang basin based on MTI technology[D].Nanjing:Nanjing Normal University,2015.
47 温浩.基于MTI技术的岷江流域滑坡识别研究[D].南京:南京师范大学,2015.
48 ZHU Dantong.Study on the evaluation of landslide susceptibility based on the surface deformation points—Examples from the Minjiang River Basin[D].Nanjing:Nanjing Normal University,2016.
48 朱丹桐.基于地表形变点的滑坡易发性评价研究——以岷江流域为例[D].南京:南京师范大学,2016.
49 ZHONG Ning.Earthquake and provenance analysis of the lacustrine sediments in the upper reaches of the Min River during the late pleistocene[D].Beijing:Institute of Geology,China Earthquake Administration,2017.
49 钟宁.岷江上游晚更新世湖相沉积的古地震及物源分析[D].北京:中国地震局地质研究所,2017.
[1] 张薇,靳国旺,向茂生. 大区域稀疏控制条件下的多条带InSAR数据的联合定标研究[J]. 遥感技术与应用, 2013, 28(1): 18-26.
[2] 刘金龙,郭华东,宋 瑞,Zbigniew Perski,刘 广,赵 峰,范景辉,闫世勇,阮智星. 多模式雷达在矿区沉降监测中的应用研究[J]. 遥感技术与应用, 2012, 27(4): 584-590.
[3] 韩松涛, 向茂生, 汪丙南. 一种基于正弦模型的干涉SAR射频干扰抑制算法[J]. 遥感技术与应用, 2009, 24(6): 818-821.
[4] 张薇,向茂生,吴一戎. 基于三维重建模型的机载双天线干涉SAR外定标方法及实现[J]. 遥感技术与应用, 2009, 24(1): 82-87.
[5] 张薇,向茂生,吴一戎. 基于正侧视模型的机载双天线干涉SAR外定标方法[J]. 遥感技术与应用, 2008, 23(3): 346-350.
[6] 韩松涛,向茂生. 一种基于干涉成像几何的水体类地表干涉处理方法[J]. 遥感技术与应用, 2007, 22(1): 105-108.
[7] 张 彪, 何宜军. 干涉合成孔径雷达海浪遥感研究[J]. 遥感技术与应用, 2006, 21(1): 11-17.