1 |
TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE measurements of mass variability in the earth system[J]. Science,2004,305(5683):503-505.DOI:10.1126/science. 1099192
doi: 10.1126/science. 1099192
|
2 |
RODELL M, VELICOGNA I, FAMIGLIETTI J S. Satellite-based estimates of groundwater depletion in India[J]. Nature,2009,460(7258):999-1002. DOI:10.1038/nature08238
doi: 10.1038/nature08238
|
3 |
RODELL M, FAMIGLIETTI J S, WIESE D N, et al. Emerging trends in global freshwater availability[J]. Nature, 2018, 557(7707): 651-659. DOI: 10.1038/s41586-018-0123-1
doi: 10.1038/s41586-018-0123-1
|
4 |
LONG Di, LI Xueying, LI Xingdong, et al. Remote sensing retrieval of water storage changes and underlying climatic mechanisms over the Tibetan Plateau during 2000—2020[J]. Advances in Water Science, 2022, 33(3): 375-389.
|
4 |
龙笛, 李雪莹, 李兴东, 等. 遥感反演2000—2020年青藏高原水储量变化及其驱动机制[J]. 水科学进展, 2022, 33(3): 375-389.
|
5 |
YANG Junyan, SUN Wenke. The theory and method of determining dislocation Love number and Green’s function using geodetic data[J]. Chinese Journal of Geophysics, 2020,63(8): 2912-2923.
|
5 |
杨君妍, 孙文科. 利用大地测量数据反演地震位错Love数和格林函数的理论与方法[J]. 地球物理学报, 2020, 63(8): 2912-2923.
|
6 |
LIU Han, WEI Hui, ZOU Xiancai. Precise GNSS phase velocity determination for GRACE Follow-On satellites[J]. Acta Geodaetica et Cartographica Sinica, 2021, 20(12): 1772-1779.
|
6 |
刘晗, 魏辉, 邹贤才. GRACE Follow-On卫星的星载GNSS相位测速法[J]. 测绘学报, 2021, 50(12): 1772-1779.
|
7 |
ZOU Zhengbo, ZHANG Yi, TAN Hongbo, et al. Study on gravity variation of the epicenter and surrounding areas of Maduo and Yangbi earthquakes during 2002-2021 by gravity satellite[J]. Seismology and Geology, 2021, 43(4): 999-1012.
|
7 |
邹正波, 张毅, 谈洪波, 等. 利用重力卫星研究青海玛多及云南漾濞地震周边2002—2021年重力变化[J]. 地震地质, 2021, 43(4): 999-1012.
|
8 |
CHEN Wei, ZHONG Min, FENG Wei, et al. Using GRACE/GRACE-FO and Swarm to estimate ice-sheets mass loss in Antarctica and Greenland during 2002-2020[J]. Chinese Journal of Geophysics, 2022, 65(3): 952-964.
|
8 |
陈威, 钟敏, 冯伟, 等. 基于GRACE/GRACE-FO和Swarm卫星研究2002—2020年南极和格陵兰岛冰盖质量时空变化[J]. 地球物理学报, 2022, 65(3): 952-964.
|
9 |
LOOMIS B D, RACHLIN K E, WIESE D N, et al. Replacing GRACE/GRACE-FO C-30 with satellite laser ranging: Impacts on Antarctic ice sheet mass change[J]. Geophysical Research Letters, 2020,47: e2019GL085488. DOI: 10.1029/2019GL085488
doi: 10.1029/2019GL085488
|
10 |
LI Yang, GUO Jinyun, SUN Yü, et al. Inversion of global sea level change and its component contributions by combining time-varying gravity data and altimetry data[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(8): 1768-1778.
|
10 |
李杨, 郭金运, 孙玉, 等. 联合时变重力数据与测高数据反演全球海平面变化及其分量贡献[J]. 测绘学报, 2022, 51(8): 1768-1778.
|
11 |
RAJ R P, ANDERSEN O B, JOHANNESSEN J A, et al. Arctic sea level budget assessment during the GRACE/Argo time period[J]. Remote Sensing, 2020, 12(17): 2837. DOI: 10.3390/rs12172837
doi: 10.3390/rs12172837
|
12 |
TAPLEY B D, WATKINS M M, FLECHTNER F, et al. Contributions of GRACE to understanding climate change[J]. Nature Climate Change,2019,9(5):358-369. DOI:10.1038/s41558-019-0456-2
doi: 10.1038/s41558-019-0456-2
|
13 |
JIANG D, WANG J H, HUANG Y H, et al. The review of GRACE data applications in terrestrial hydrology monitoring[J]. Advances in Meteorology, 2014, 2014: 725131. DOI: 10.1155/2014/725131
doi: 10.1155/2014/725131
|
14 |
PENG Cong, ZHOU Xinghua, KU Anbang. Review on the domestic applications of GRACE gravity satellite data[J]. Hydrographic Surveying and Charting, 2017, 37(6): 9-12.
|
14 |
彭聪, 周兴华, 库安邦. GRACE重力卫星数据国内应用研究现状综述[J]. 海洋测绘, 2017, 37(6): 9-12.
|
15 |
LIU Liu, WANG Xuanxuan, NIU Qiankun, et al. Evolution characteristic of terrestrial water storage change and its attribution analysis over the Yarlung Zangbo River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(14): 135-144.
|
15 |
刘浏, 王宣宣, 牛乾坤, 等. 雅鲁藏布江流域陆地水储量变化特征及归因[J]. 农业工程学报, 2021, 37(14): 135-144.
|
16 |
CHEN Wei, ZHONG Min, FENG Wei, et al. Effects of two strong ENSO events on terrestrial water storage anomalies in China from GRACE during 2005—2017[J]. Chinese Journal of Geophysics, 2020, 63(1): 141-154.
|
16 |
陈威, 钟敏, 冯伟, 等. 2005—2017年两次强ENSO事件对中国区域陆地水储量变化影响的卫星重力观测[J]. 地球物理学报, 2020, 63(1): 141-154.
|
17 |
LI Shu, SHI Pengfei, GU Xiaowei, et al. GRACE-based monitoring groundwater change in coal mining areas[J]. Journal of Hydraulic Engineering, 2021, 52(12): 1439-1448.
|
17 |
李舒, 师鹏飞, 谷晓伟, 等. GRACE重力卫星监测煤矿开采区地下水变化研究[J]. 水利学报, 2021, 52(12): 1439-1448.
|
18 |
LONG D, YANG W T, SCANLON B R, et al. South-to-North water diversion stabilizing Beijing’s groundwater levels[J]. Nature Communications, 2020, 11: 3665. DOI: 10.1038/s41467-020-17428-6
doi: 10.1038/s41467-020-17428-6
|
19 |
FENG Guiping, SONG Qingtao, JIANG Xingwei. Global groundwater storage changes and characteristics observed by satellite gravimetry[J]. Remote Sensing Technology and Application, 2019, 34(4): 822-828.
|
19 |
冯贵平, 宋清涛, 蒋兴伟. 卫星重力监测全球地下水储量变化及其特征[J]. 遥感技术与应用, 2019, 34(4): 822-828.
|
20 |
LONG Di, YANG Wenting, SUN Zhangli, et al. GRACE satellite-based estimation of groundwater storage changes and water balance analysis for the Haihe River Basin[J]. Journal of Hydraulic Engineering, 2023, 54(3): 255-267.
|
20 |
龙笛, 杨文婷, 孙章丽, 等. 海河平原地下水储量变化的重力卫星反演和流域水量平衡[J]. 水利学报, 2023, 54(3): 255-267.
|
21 |
RAN Yanhong, ZHONG Min, CHEN Wei, et al. Monitoring the extreme drought in the middle and lower reaches of the Yangtze River in 2019 from GRACE-FO satellites[J]. Chinese Science Bulletin, 2021, 66(1): 107-117.
|
21 |
冉艳红, 钟敏, 陈威, 等. 利用GRACE-FO重力卫星探测2019年长江中下游极端干旱[J]. 科学通报, 2021, 66(1): 107-117.
|
22 |
THOMAS B F, FAMIGLIETTI J S, LANDERER F W, et al. GRACE groundwater drought index:Evaluation of California Central Valley groundwater drought[J]. Remote Sensing of Environment, 2017, 198: 384-392. DOI: 10.1016/j.rse.2017.06.026
doi: 10.1016/j.rse.2017.06.026
|
23 |
HAN Z M, HUANG S Z, HUANG Q, et al. Propagation dynamics from meteorological to groundwater drought and their possible influence factors[J]. Journal of Hydrology,2019,578:124102. DOI:10.1016/j.jhydrol. 2019. 124102
doi: 10.1016/j.jhydrol. 2019. 124102
|
24 |
SU Xiaoling, CHU Jiangdong, ZHANG Te, et al. Spatio-temporal evolution trend of groundwater drought and its dynamic response to meteorological drought in Northwest China[J]. Water Resources Protection, 2022, 38(1): 34-42.
|
24 |
粟晓玲, 褚江东, 张特, 等. 西北地区地下水干旱时空演变趋势及对气象干旱的动态响应[J]. 水资源保护, 2022, 38(1): 34-42.
|
25 |
LANDERER F W, FLECHTNER F M, SAVE H, et al. Extending the global mass change data record: GRACE Follow-On instrument and science data performance[J]. Geophysical Research Letters, 2020, 47: e2020GL088306. DOI: 10.1029/2020GL088306
doi: 10.1029/2020GL088306
|
26 |
REN Liliang, WANG Yu, JIANG Shanhu, et al. GRACE and GRACE-FO -based terrestrial water storage and its influencing factor analysis of the Yellow River Basin[J]. Water Resources Protection,2022,38(4):26-32.
|
26 |
任立良,王宇,江善虎,等. 基于GRACE和GRACE-FO的黄河流域陆地水储量及影响因素分析[J]. 水资源保护,2022,38(4):26-32.
|
27 |
SUN Z L, LONG D, YANG W T, et al. Reconstruction of GRACE data on changes in total water storage over the global land surface and 60 basins[J]. Water Resources Research, 2020, 55: e2019WR026250. DOI: 10.1029/2019WR026250
doi: 10.1029/2019WR026250
|
28 |
LI F P, KUSCHE J, RIETBROEK R, et al. Comparison of data-driven techniques to reconstruct (1992-2002) and predict (2017-2018) GRACE-like gridded total water storage changes using climate inputs[J]. Water Resources Research, 2020, 56: e2019WR026551. DOI: 10.1029/2019WR026551
doi: 10.1029/2019WR026551
|
29 |
ZHONG Y L, FENG W, HUMPHREY V, et al. Human-induced and climate-driven contributions to water storage variations in the Haihe River Basin, China[J]. Remote Sensing, 2019, 11(24): 3050. DOI: 10.3390/rs11243050
doi: 10.3390/rs11243050
|
30 |
XIONG J H, YIN J B, GUO S L, et al. Continuity of terrestrial water storage variability and trends across mainland China monitored by the GRACE and GRACE-Follow on satellites[J]. Journal of Hydrology, 2021, 599: 126308. DOI: 10.1016/j.jhydrol.2021.126308
doi: 10.1016/j.jhydrol.2021.126308
|
31 |
ZHANG Lan, SUN Wenke. Progress and prospect of GRACE Mascon product and its application[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(1): 35-52.
|
31 |
张岚, 孙文科. 重力卫星GRACE Mascon产品的应用研究进展与展望[J]. 地球与行星物理论评, 2022, 53(1): 35-52.
|
32 |
FENG W. GRAMAT: A comprehensive Matlab toolbox for estimating global mass variations from GRACE satellite data[J]. Earth Science Informatics,2019,12(3):389-404. DOI: 10.1007/s12145-018-0368-0
doi: 10.1007/s12145-018-0368-0
|
33 |
CHEN H, ZHANG W C, NIE N, et al. Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations[J]. Science of The Total Environment,2019,649:372-387. DOI: 10.1016/j.scitotenv.2018. 08.352
doi: 10.1016/j.scitotenv.2018. 08.352
|
34 |
CAO Yang, YANG Mingxiang, LEI Xiaohui, et al. Review on the application of GRACE satellite in China’s terrestrial water storage[J]. China Rural Water and Hydropower, 2017(8): 74-79.
|
34 |
曹阳, 杨明祥, 雷晓辉, 等. GRACE卫星数据在国内陆地水储量反演中的应用综述[J]. 中国农村水利水电, 2017(8): 74-79.
|
35 |
HU Baoyi, WANG Lei. Terrestrial water storage change and its attribution: a review and perspective[J]. Water Resources and Hydropower Engineering, 2021, 52(5): 13-25.
|
35 |
胡宝怡, 王磊. 陆地水储量变化及其归因:研究综述及展望[J]. 水利水电技术, 2021, 52(5): 13-25.
|
36 |
HU Litang, SUN Kangning, YIN Wenjie. Review on the application of GRACE satellite in regional groundwater management[J]. Journal of Earth Sciences and Environment, 2016, 38(2): 258-266.
|
36 |
胡立堂, 孙康宁, 尹文杰. GRACE卫星在区域地下水管理中的应用潜力综述[J]. 地球科学与环境学报, 2016, 38(2): 258-266.
|
37 |
FRAPPART F, RAMILLIEN G. Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: a review[J]. Remote Sensing, 2018, 10(6): 829. DOI: 10.3390/rs10060829
doi: 10.3390/rs10060829
|
38 |
TU Mengzhao, LIU Zhifeng, HE Chunyang, et al. Research progress of groundwater storage changes monitoring in China based on GRACE satellite data[J]. Advances in Earth Science, 2020, 35(6): 643-656.
|
38 |
涂梦昭, 刘志锋, 何春阳, 等. 基于GRACE卫星数据的中国地下水储量监测进展[J]. 地球科学进展, 2020, 35(6): 643-656.
|
39 |
ZHONG Y L, ZHONG M, FENG W, et al. Groundwater depletion in the West Liaohe River Basin, China and its implications revealed by GRACE and in situ measurements[J]. Remote Sensing, 2018, 10(4): 493. DOI: 10.3390/rs 10040493
doi: 10.3390/rs 10040493
|
40 |
WEI Guanghui, YANG Peng, ZHOU Haiying, et al. An Analysis of the drought characteristics and driving factors of Tarim River Basin based on downscaled terrestrial water storage from GRACE[J]. China Rural Water and Hydropower, 2020(7):12-19.
|
40 |
魏光辉, 杨鹏, 周海鹰, 等. 基于GRACE陆地水储量降尺度的塔里木河流域干旱特征及驱动因子分析[J]. 中国农村水利水电, 2020(7):12-19.
|
41 |
TAO Zhengguang, TAO Tingye, DING Xin, et al. Groundwater storage changes in Anhui province derived from GRACE and GLDAS hydrological model[J]. Progress in Geophysics, 2021, 36(4):1456-1463.
|
41 |
陶征广, 陶庭叶, 丁鑫, 等. 基于GRACE和GLDAS水文模型反演安徽省地下水储量变化[J]. 地球物理学进展, 2021, 36(4): 1456-1463.
|
42 |
XIONG Jinghua, WANG Zhaoli. Spatiotemporal changes of terrestrial water storage in the Pearl River Basin based on GRACE data[J]. Journal of China Hydrology, 2021, 41(6):33-39.
|
42 |
熊景华, 王兆礼. 基于GRACE重力卫星的珠江流域陆地水储量时空变化研究[J]. 水文, 2021, 41(6):33-39.
|
43 |
YAO Chaolong, LI Qiong, LUO Zhicai, et al. Uncertainties in GRACE-derived terrestrial water storage changes over mainland China based on a generalized Three-cornered Hat Method[J]. Chinese Journal of Geophysics, 2019, 62(3): 883-897.
|
43 |
姚朝龙, 李琼, 罗志才, 等. 利用广义三角帽方法评估GRACE反演中国大陆地区水储量变化的不确定性[J]. 地球物理学报, 2019, 62(3): 883-897.
|
44 |
NIE Ning, ZHANG Wanchang, CHEN Hao, et al. Temporal variation characteristics and attribution analysis of terrestrial water storage change in the Yangtze River basin[J]. Advances in Water Science, 2021, 32(3): 396-407.
|
44 |
聂宁, 张万昌, 陈豪, 等. 长江流域水储量变化的时间变化特征及归因分析[J]. 水科学进展, 2021, 32(3): 396-407.
|
45 |
LONG D, PAN Y, ZHOU J, et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models[J]. Remote Sensing of Environment, 2017, 192: 198-216. DOI: 10.1016/j.rse.2017.02.011
doi: 10.1016/j.rse.2017.02.011
|
46 |
MEHRNEGAR N, JONES O, SINGER M B, et al. Comparing global hydrological models and combining them with GRACE by dynamic model data averaging (DMDA)[J]. Advances in Water Resources,2020,138:103528. DOI:10.1016/j.advwatres.2020.103528
doi: 10.1016/j.advwatres.2020.103528
|
47 |
SAKUMURA C, BETTADPUR S, BRUINSMA S. Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models[J]. Geophysical Research Letters,2014,41(5):1389-1397. DOI: 10.1002/2013GL058632
doi: 10.1002/2013GL058632
|
48 |
LIU Renli, SHE Dunxian, LI Min, et al. Using satellite observations to assess applicability of GLDAS and WGHM hydrological model[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1596-1604.
|
48 |
刘任莉, 佘敦先, 李敏, 等. 利用卫星观测数据评估GLDAS与WGHM水文模型的适用性[J]. 武汉大学学报(信息科学版), 2019, 44(11): 1596-1604.
|
49 |
FENG Wei, WANG Changqing, MU Dapeng, et al. Groundwater storage variations in the North China Plain from GRACE with spatial constraints[J]. Chinese Journal of Geophysics, 2017, 60(5): 1630-1642.
|
49 |
冯伟, 王长青, 穆大鹏, 等. 基于GRACE的空间约束方法监测华北平原地下水储量变化[J]. 地球物理学报, 2017, 60(5): 1630-1642.
|
50 |
LONG D, YANG Y T, WADA Y, et al. Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China's Yangtze River Basin[J]. Remote Sensing of Environment, 2015, 168: 177-193. DOI: 10.1016/j.rse.2015.07.003
doi: 10.1016/j.rse.2015.07.003
|
51 |
WAHR J, MOLENAAR M, BRYAN F. Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30205-30229. DOI: 10.1029/98JB02844
doi: 10.1029/98JB02844
|
52 |
JING W L, ZHAO X D, YAO L, et al. Variations in terrestrial water storage in the Lancang-Mekong River basin from GRACE solutions and land surface model[J]. Journal of Hydrology,2020,580:124258. DOI: 10.1016/j.jhydrol.2019.124258
doi: 10.1016/j.jhydrol.2019.124258
|
53 |
DENG H J, PEPIN N C, LIU Q, et al. Understanding the spatial differences in terrestrial water storage variations in the Tibetan Plateau from 2002 to 2016[J]. Climatic Change, 2018,151(3-4):379-393. DOI:10.1007/s10584-018-2325-9
doi: 10.1007/s10584-018-2325-9
|
54 |
CHEN Yaning, LI Zhi, FANG Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountains, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 18-26.
|
54 |
陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
|
55 |
FENG Wei, JEAN-MICHEL L, ZHONG Min, et al. Terrestrial water storage changes in the Amazon basin measured by GRACE during 2002-2010[J]. Chinese Journal of Geophysics,2012,55(3):814-821.
|
55 |
冯伟, Jean-Michel L, 钟敏, 等. 利用重力卫星GRACE监测亚马逊流域2002—2010年的陆地水变化[J]. 地球物理学报, 2012, 55(3): 814-821.
|
56 |
HAN Z M, HUANG S Z, HUANG Q, et al. Assessing GRACE-based terrestrial water storage anomalies dynamics at multi-timescales and their correlations with teleconnection factors in Yunnan Province, China[J]. Journal of Hydrology,2019,574:836-850. DOI:10.1016/j.jhydrol.2019. 04.093
doi: 10.1016/j.jhydrol.2019. 04.093
|
57 |
SHEN Z X, ZHANG Q, SINGH V P, et al. Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia[J]. Nature Communications, 2022, 13: 1849. DOI: 10.1038/s41467-022-29544-6
doi: 10.1038/s41467-022-29544-6
|
58 |
XU Y, GONG H L, CHEN B B, et al. Long-term and seasonal variation in groundwater storage in the North China Plain based on GRACE[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 104: 102560. DOI: 10.1016/j.jag.2021.102560
doi: 10.1016/j.jag.2021.102560
|
59 |
FENG W, ZHONG M, LEMOINE J, et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements[J]. Water Resources Research, 2013, 49(4): 2110-2118. DOI: 10.1002/wrcr.20192
doi: 10.1002/wrcr.20192
|
60 |
TIWARI V M, WAHR J, SWENSON S. Dwindling groundwater resources in northern India, from satellite gravity observations[J]. Geophysical Research Letters,2009,36:L18401. DOI: 10.1029/2009GL039401
doi: 10.1029/2009GL039401
|
61 |
ZHANG Ke, JU Yan, LI Zhijia. Satellite-based reconstruction and spatiotemporal variability analysis of actual evapotranspiration in the Jinshajiang River basin, China[J]. Advances in Water Science, 2021, 32(2): 182-191.
|
61 |
张珂, 鞠艳, 李致家. 金沙江流域实际蒸散发遥感重建及时空特征分析[J]. 水科学进展, 2021, 32(2): 182-191.
|
62 |
JU Yan, ZHANG Ke, LI Bingfeng, et al. Spatiotemporal distribution of actual evapotranspiration and its influencing factors in the Jinsha River Basin[J]. Water Resources Protection, 2022, 38(6): 104-110.
|
62 |
鞠艳, 张珂, 李炳锋, 等. 金沙江流域实际蒸散发时空分布特征及其影响因子[J]. 水资源保护, 2022, 38(6): 104-110.
|
63 |
YUN Zhaode, HU Qingfang, WANG Yintang, et al. Accuracy validation of remote sensing and reanalysis evapotranspiration data: A comparative study based on GRACE and monthly water balance model[J]. Journal of Hydraulic Engineering, 2023, 54(1): 117-127.
|
63 |
云兆得, 胡庆芳, 王银堂, 等. 遥感和再分析蒸散发数据精度评估:基于GRACE和流域月水量平衡模型的比较研究[J]. 水利学报, 2023, 54(1): 117-127.
|
64 |
CASTLE S L, REAGER J T, THOMAS B F, et al. Remote detection of water management impacts on evapotranspiration in the Colorado River basin[J]. Geophysical Research Letters,2016,43,5089-5097. DOI:10.1002/2016GL068675
doi: 10.1002/2016GL068675
|
65 |
PAN Y, ZHANG C, GONG H L, et al. Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China[J]. Geophysical Research Letters, 2018, 44(1), 190-199. DOI: 10.1002/2016GL071287
doi: 10.1002/2016GL071287
|
66 |
WEI Lin, DUAN Kai, LIU Xiaodong, et al. Assessing human-induced evapotranspiration change based on multi-source data and Bayesian model averaging at the basin scale[J]. Journal of Hydraulic Engineering, 2022, 53(4): 433-444.
|
66 |
韦林, 段凯, 刘效东, 等. 基于多源数据与多模型集成的流域人为蒸散发变异评估[J]. 水利学报, 2022, 53(4): 433-444.
|
67 |
WAN Z M, ZHANG K, XUE X W, et al. Water balance-based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous United States[J]. Water Resources Research,2015,51(8):6485-6499. DOI: 10.1002/2015WR017311
doi: 10.1002/2015WR017311
|
68 |
RODELL M, CHEN J L, KATO H, et al. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE[J]. Hydrogeology Journal, 2007, 15(1): 159-166. DOI: 10.1007/s10040-006-0103-7
doi: 10.1007/s10040-006-0103-7
|
69 |
VASCO D W, KIM K H, FARR T G, et al. Using Sentinel-1 and GRACE satellite data to monitor the hydrological variations within the Tulare Basin, California[J]. Scientific Reports, 2022, 12:3867. DOI: 10.1038/s41598-022-07650-1
doi: 10.1038/s41598-022-07650-1
|
70 |
SUN Qin, XIE Zhenghui, TIAN Xiangjun. GRACE terrestrial water storage data assimilation based on the ensemble four-dimensional variational method PODEn4DVar: Method and validation[J]. Science China: Earth Sciences, 2014, 44(12): 2753-2767.
|
70 |
孙琴, 谢正辉, 田向军. 基于集合四维变分方法PODEn4DVar的GRACE陆地水储量同化:方法与验证[J]. 中国科学:地球科学, 2014, 44(12): 2753-2767.
|
71 |
SU Xiaoling, ZHANG Gengxi, FENG Kai. Progress and perspective of drought index[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(5): 9-18.
|
71 |
粟晓玲, 张更喜, 冯凯. 干旱指数研究进展与展望[J]. 水利与建筑工程学报, 2019, 17(5): 9-18.
|
72 |
MCKEE T B, DOESKEN N J, KLEIST J. The relationship of drought frequency and duration to time scales[C]∥Proceedings of the Eighth Conference on Applied Climatology. Boston: American Meteorological Society, 1993.
|
73 |
ALLEY W M. The Palmer Drought Severity Index: Limitations and assumptions[J]. Journal of Climate and Applied Meteorology, 1984, 23(7): 1100-1109. DOI: 10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2
doi: 10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2
|
74 |
YI H, WEN L X. Satellite gravity measurement monitoring terrestrial water storage change and drought in the continental United States[J]. Scientific Reports, 2016, 6: 19909. DOI: 10.1038/srep19909
doi: 10.1038/srep19909
|
75 |
CUI A H, LI J F, ZHOU Q M, et al. Use of a multiscalar GRACE-based standardized terrestrial water storage index for assessing global hydrological droughts[J]. Journal of Hydrology,2021,603:126871. DOI:10.1016/j.jhydrol. 2021.126871
doi: 10.1016/j.jhydrol. 2021.126871
|
76 |
YIRDAW S Z, SNELGROVE K R, AGBOMA C O. GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie[J]. Journal of Hydrology, 2008, 356(1-2): 84-92. DOI: 10.1016/j.jhydrol.2008.04.004
doi: 10.1016/j.jhydrol.2008.04.004
|
77 |
CAO Y P, NAN Z T, CHENG G D. GRACE gravity satellite observations of terrestrial water storage changes for drought characterization in the arid land of Northwestern China[J]. Remote Sensing,2015,7(1):1021-1047. DOI:10.3390/rs70101021
doi: 10.3390/rs70101021
|
78 |
HOSSEINI-MOGHARI S, ARAGHINEJAD S, EBRAHIMI K, et al. Introducing modified total storage deficit index (MTSDI) for drought monitoring using GRACE observations[J]. Ecological Indicators,2019,101:465-475. DOI:10.1016/j.ecolind.2019.01.002
doi: 10.1016/j.ecolind.2019.01.002
|
79 |
ZHAO M, VELICOGNAI A G, et al. A global gridded dataset of GRACE drought severity index for 2002-14: comparison with PDSI and SPEI and a case study of the Australia Millennium drought[J]. Journal of Hydrometeorology, 2017, 18(8): 2117-2129. DOI: 10.1175/JHM-D-16-0182.1
doi: 10.1175/JHM-D-16-0182.1
|
80 |
LIU X F, FENG X M, CIAIS P, et al. GRACE satellite-based drought index indicating increased impact of drought over major basins in China during 2002-2017[J]. Agricultural and Forest Meteorology, 2020, 291: 108057. DOI: 10.1016/j.agrformet.2020.108057
doi: 10.1016/j.agrformet.2020.108057
|
81 |
WANG Wen, WANG Peng, CUI Wei. A comparison of terrestrial water storage data and multiple hydrological data in the Yangtze River basin[J]. Advances in Water Science,2015,26(6):759-768.
|
81 |
王文,王鹏,崔巍.长江流域陆地水储量与多源水文数据对比分析[J]. 水科学进展,2015,26(6): 759-768.
|
82 |
DENG Zifeng, WU Xushu, WANG Zhaoli, et al. Drought monitoring based on GRACE data in the Pearl River Basin, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 179-187.
|
82 |
邓梓锋, 吴旭树, 王兆礼, 等. 基于GRACE重力卫星数据的珠江流域干旱监测[J]. 农业工程学报, 2020, 36(20): 179-187.
|
83 |
SINHA D, SYED T H, Famiglietti J S, et al. Characterizing drought in India using GRACE observations of terrestrial water storage deficit[J]. Journal of Hydrometeorology, 2017, 18(2): 381-396. DOI: 10.1175/JHM-D-16-0047.1
doi: 10.1175/JHM-D-16-0047.1
|
84 |
DENG S S, LIU S X, MO X G. Assessment and attribution of China’s droughts using an integrated drought index derived from GRACE and GRACE-FO data[J]. Journal of Hydrology, 2021, 603: 127170. DOI: 10.1016/j.jhydrol. 2021.127170
doi: 10.1016/j.jhydrol. 2021.127170
|
85 |
SUN Z L, ZHU X F, PAN Y Z, et al. Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China[J]. Science of The Total Environment, 2018, 634: 727-738. DOI: 10.1016/j.scitotenv.2018.03.292
doi: 10.1016/j.scitotenv.2018.03.292
|
86 |
QU Wei, JIN Zehui, ZHANG Qin, et al. Drought characteristics of the Yellow River basin from 2002 to 2020 revealed by GRACE and GRACE Follow-On data[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 714-724.
|
86 |
瞿伟, 晋泽辉, 张勤, 等. GRACE与GRACE Follow-On重力卫星数据揭示出的黄河流域2002—2020年干旱特征[J]. 测绘学报, 2023, 52(5): 714-724.
|
87 |
WANG F, WANG Z M, YANG H B, et al. Utilizing GRACE-based groundwater drought index for drought characterization and teleconnection factors analysis in the North China Plain[J].Journal of Hydrology,2020,585:124849. DOI: 10.1016/j.jhydrol.2020.124849
doi: 10.1016/j.jhydrol.2020.124849
|
88 |
SATISH K K, VENKATA R E, SRIDHAR V. Tracking seasonal and monthly drought with GRACE-based terrestrial water storage assessments over major river basins in South India[J]. Science of the Total Environment,2020,763:142994. DOI: 10.1016/j.scitotenv.2020.142994
doi: 10.1016/j.scitotenv.2020.142994
|
89 |
HAN Z M, HUANG S Z, HUANG Q, et al. Effects of vegetation restoration on groundwater drought in the Loess Plateau, China[J]. Journal of Hydrology, 2020, 591:125566. DOI: 10.1016/j.jhydrol.2020.125566
doi: 10.1016/j.jhydrol.2020.125566
|
90 |
ZHU Q, ZHANG H. Groundwater drought characteristics and its influencing factors with corresponding quantitative contribution over the two largest catchments in China[J]. Journal of Hydrology, 2022, 609: 127759. DOI: 10.1016/j.jhydrol.2022.127759
doi: 10.1016/j.jhydrol.2022.127759
|
91 |
SINHA D, SYED T H, REAGER J T. Utilizing combined deviations of precipitation and GRACE-based terrestrial water storage as a metric for drought characterization: A case study over major Indian river basins[J]. Journal of Hydrology, 2019, 572: 294-307. DOI: 10.1016/j.jhydrol.2019.02.053
doi: 10.1016/j.jhydrol.2019.02.053
|
92 |
XU Y Y, ZHU X Y, CHENG X, et al. Drought assessment of China in 2002-2017 based on a comprehensive drought index[J]. Agricultural and Forest Meteorology, 2022, 319: 108922. DOI: 10.1016/j.agrformet.2022.108922 .
doi: 10.1016/j.agrformet.2022.108922
|
93 |
WU Zhiyong, CHENG Dandan, HE Hai, et al. Research progress of composite drought index[J]. Water Resources Protection, 2021, 37(1): 36-45.
|
93 |
吴志勇, 程丹丹, 何海, 等. 综合干旱指数研究进展[J]. 水资源保护, 2021, 37(1): 36-45.
|
94 |
YUAN Ruiqiang, QING Song. Response of the normalized difference vegetation index to water storage in terrestrial basin of the yellow river basin: taking 2002-2015 as an example[J]. Journal of Irrigation and Drainage, 2020, 39(10): 115-122.
|
94 |
袁瑞强, 青松. 2002―2015年黄河流域NDVI对陆地水储量的响应[J]. 灌溉排水学报, 2020, 39(10): 115-122.
|
95 |
ALTUNKAYNAK A, JALILZADNEZAMABAD A. Extended lead time accurate forecasting of palmer drought severity index using hybrid wavelet-fuzzy and machine learning techniques[J]. Journal of Hydrology, 2021, 601: 126619. DOI: 10.1016/j.jhydrol.2021.126619
doi: 10.1016/j.jhydrol.2021.126619
|
96 |
YIN W J, FAN Z W, TANGDAMRONGSUB N, et al. Comparison of physical and data-driven models to forecast groundwater level changes with the inclusion of GRACE-a case study over the state of Victoria, Australia[J]. Journal of Hydrology, 2021, 602: 126735. DOI: 10.1016/j.jhydrol. 2021.126735
doi: 10.1016/j.jhydrol. 2021.126735
|
97 |
LIANG Wentao, WEI Linyong, LIU Yi, et al. Increase in terrestrial water storage and possible causes over the source region of the Yellow River in recent two decades[J]. China Rural Water and Hydropower, 2022, 479(9): 70-74.
|
97 |
梁文涛, 卫林勇, 刘懿, 等. 近20年黄河源区陆地水储量增加及其可能原因分析[J]. 中国农村水利水电, 2022, 479(9): 70-74.
|
98 |
WEI L Y, JIANG S H, REN L L, et al. Spatiotemporal changes of terrestrial water storage and possible causes in the closed Qaidam Basin, China using GRACE and GRACE Follow-On data[J]. Journal of Hydrology, 2021, 598: 126274. DOI: 10.1016/j.jhydrol.2021.126274
doi: 10.1016/j.jhydrol.2021.126274
|
99 |
LI W Q, WANG W, ZHANG C Y, et al. Bridging terrestrial water storage anomaly during GRACE/GRACE-FO gap using SSA method: A case study in China[J]. Sensors, 2019, 19, 4144. DOI: 10.3390/s19194144
doi: 10.3390/s19194144
|
100 |
LAI Y, ZHANG B, YAO Y B, et al. Reconstructing the data gap between GRACE and GRACE follow-on at the basin scale using artificial neural network[J]. Science of The Total Environment, 2022, 823: 153770. DOI: 10.1016/j.scitotenv.2022.153770
doi: 10.1016/j.scitotenv.2022.153770
|
101 |
AHMED M, SULTAN M, ELBAYOUMI T, et al. Forecasting GRACE data over the African watersheds using artificial neural networks[J]. Remote Sensing, 2019, 11(15): 1769. DOI: 10.3390/rs11151769
doi: 10.3390/rs11151769
|
102 |
CHU Jiangdong, SU Xiaoling, WU Haijiang, et al. Analysis of terrestrial water storage and its component changes in China from 2002 to 2021[J]. Water Resources Protection, 2022, 39(3): 170-178.
|
102 |
褚江东, 粟晓玲, 吴海江, 等. 2002—2021年中国陆地水储量及其组分变化分析[J]. 水资源保护, 2022, 39(3): 170-178.
|
103 |
ZHANG X, LI J B, DONG Q J, et al. Bridging the gap between GRACE and GRACE-FO using a hydrological model[J]. Science of The Total Environment, 2022, 822: 153659. DOI: 10.1016/j.scitotenv.2022.153659
doi: 10.1016/j.scitotenv.2022.153659
|
104 |
HUMPREY V, GUDMUNDSSON L. GRACE-REC: a reconstruction of climate-driven water storage changes over the last century[J]. Earth System Science Data, 2019, 11: 1153-1170. DOI: 10.5194/essd-11-1153-2019
doi: 10.5194/essd-11-1153-2019
|
105 |
ZHONG Y L, FENG W, HUMPHREY V, et al. Human-induced and climate-driven contributions to water storage variations in the Haihe River Basin, China[J]. Remote Sensing, 2019, 11: 3050. DOI: 10.3390/rs11243050
doi: 10.3390/rs11243050
|
106 |
SUN A Y, SCANLON B R, ZHANG Z Z, et al. Combining physically-based modeling and deep learning for fusing GRACE satellite data: Can we learn from mismatch?[J]. Water Resources Research, 2019, 55(2): 1179-1195. DOI: 10.1029/2018WR023333
doi: 10.1029/2018WR023333
|
107 |
YANG Yuanhang, YIN Jiabo, GUO Shenglian, et al. Projection of terrestrial drought evolution and its eco-hydrological effects in China[J]. Chinese Science Bulletin, 2023, 68(7): 817-829.
|
107 |
杨远航,尹家波,郭生练,等.中国陆域干旱演变预估及其生态水文效应[J].科学通报,2023,68(7):817-829.
|
108 |
SOLTANI S S, ATAIE-ASHTIANI B, SIMMONS C T. Review of assimilating GRACE terrestrial water storage data into hydrological models: Advances, challenges and opportunities[J]. Earth-Science Reviews, 2021, 213: 103487. DOI: 10.1016/j.earscirev.2020.103487
doi: 10.1016/j.earscirev.2020.103487
|
109 |
WANG Qiuyu, RAO Weilong, ZHANG Lan, et al. Progress and prospect of GRACE time-varying gravity signal inversion method[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(9):104-116.
|
109 |
汪秋昱, 饶维龙, 张岚, 等. GRACE时变重力信号反演方法研究的进展和展望[J]. 华中科技大学(自然科学版), 2022, 50(9): 104-116.
|
110 |
CHU J D, SU X L, JIANG T L, et al. Filling the gap between GRACE and GRACE-FO data using a model integrating variational mode decomposition and long short-term memory: A case study of Northwest China[J]. Environmental Earth Sciences, 2023, 82(1): 38. DOI: 10.1007/s12665-022-10716-y
doi: 10.1007/s12665-022-10716-y
|
111 |
YIN W J, HU L T, ZHANG M L, et al. Statistical downscaling of GRACE-Derived groundwater storage using ET data in the North China Plain[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(11): 5973-5987. DOI: 10.1029/2017JD027468
doi: 10.1029/2017JD027468
|
112 |
WANG Jie, BIAN Yuhan, LIU Junjie, et al. Downscaling analysis of GRACE terrestrial water storage changes based on GLDAS in China[J]. Water Resources and Power, 2020, 38(2): 31-35.
|
112 |
王洁, 边宇晗, 刘俊杰, 等. 基于同化数据的GRACE卫星反演中国陆地水储量变化降尺度分析[J]. 水电能源科学, 2020, 38(2): 31-35.
|
113 |
ZHANG J X, LIU K, WANG M. Downscaling groundwater storage data in China to a 1-km resolution using machine learning methods[J]. Remote Sensing, 2021, 13(3): 523. DOI: 10.3390/rs13030523
doi: 10.3390/rs13030523
|
114 |
ZUO J P, XU J H, CHEN Y N, et al. Downscaling simulation of groundwater storage in the Tarim River basin in northwest China based on GRACE data[J]. Physics and Chemistry of the Earth, 2021, 123: 103042. DOI: 10.1016/j.pce.2021.103042
doi: 10.1016/j.pce.2021.103042
|
115 |
KHORRAMI B, ALI S, GUNDUZ O, et al. Investigating the local-scale fluctuations of groundwater storage by using downscaled GRACE/GRACE-FO JPL Mascon product based on machine learning (ML) Algorithm[J]. Water Resources Management,2023, DOI:10.1007/s11269-023-03509-w
doi: 10.1007/s11269-023-03509-w
|
116 |
XU Zhongfeng, HAN Ying, YANG Zongliang. Review of research on regional climate dynamic downscaling methods[J]. Scientia Sinica Terrae, 2019, 49(3): 487-498.
|
116 |
徐忠峰, 韩瑛, 杨宗良. 区域气候动力降尺度方法研究综述[J]. 中国科学:地球科学, 2019, 49(3): 487-498.
|
117 |
RAN Jiangjun, YAN Zhengwen, WU Yunlong, et al. Research status and future perspectives in next generation gravity mission[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 841-857.
|
117 |
冉将军, 闫政文,吴云龙, 等. 下一代重力卫星任务研究概述与未来展望[J]. 武汉大学学报(信息科学版), 2023, 48(6): 841-857.
|