Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (5): 1003-1016    DOI: 10.11873/j.issn.1004-0323.2023.5.1003
综述     
GRACE数据反演水储量及监测干旱的应用现状与展望
褚江东1,2(),粟晓玲1,2(),姜田亮1,2,3,4,胡雪雪1,2,张特1,2,吴海江1,2
1.西北农林科技大学旱区农业水土工程教育部重点实验室,陕西 杨凌 712100
2.西北农林科技大学水利与建筑工程学院,陕西 杨凌 712100
3.中国水利水电科学研究院防洪抗旱减灾研究所,北京 100038
4.水利部防洪抗旱减灾工程技术研究中心,北京 100038
Application Status and Prospect of Water Storage and Drought Monitoring based on GRACE Data
Jiangdong CHU1,2(),Xiaoling SU1,2(),Tianling JIANG1,2,3,4,Xuexue HU1,2,Te ZHANG1,2,Haijiang WU1,2
1.Key Laboratory for Agricultural Soil and Water Engineering in Arid and Semiarid Area of Ministry of Education,Northwest A & F University,Yangling 712100,China
2.College of Water Resources and Architectural Engineering,Northwest A & F University,Yangling 712100,China
3.China Institute of Water Resources and Hydropower Research,Beijing 100038,China
4.Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources,Beijing 100038,China
 全文: PDF(1877 KB)   HTML
摘要:

水储量是全球和区域水文循环的重要组分,借此可分析区域水资源和干旱的时空演变规律。传统的水储量监测方法以地下水位监测为主,但站点布设和分布情况限制了大尺度的研究与探索。GRACE(Gravity Recovery and Climate Experiment)卫星提供了大尺度的逐月地球重力场变化数据,国内外众多学者将其反演的水储量变化数据应用至水文学领域,在一定程度上推动了水文学的进步与发展,但目前系统阐述GRACE数据在反演水储量方面的研究仍不够全面,鲜有研究对基于GRACE数据的监测干旱和插补重建现状进行系统性的总结。该研究简要介绍了GRACE数据的应用领域,探讨了两种数据处理方法的优缺点,分析总结了GRACE数据在反演结果验证和不确定性、陆地水储量变化、地下水储量变化、干旱演变与响应、插补重建等方面的应用现状及存在问题,建议未来在变化环境对水储量变化的影响、降低GRACE数据的不确定性、构建更适合干旱监测的干旱指数、提高插补重建GRACE数据精度和提升GRACE数据时空分辨率等方面进一步开展研究,旨在为利用GRACE数据的相关研究提供借鉴与思考。

关键词: GRACE水储量变化干旱插补重建水文学    
Abstract:

Water storage is a critical component of the global and regional hydrological cycle, which can be used to analyze the spatio-temporal evolution of regional water resources and drought. Traditional methods to monitor water storage are usually based on in-situ groundwater level data. However, challenges arise due to the limited placement and distribution of monitoring stations in large-scale research and exploration. The Gravity Recovery and Climate Experiment (GRACE) satellite have provided large-scale monthly data on Earth's gravity field variation. Several scholars have applied the water storage anomalies data retrieved by GRACE in hydrology research, which has facilitated the progress and development of hydrology. However, the current systematic elaboration of research on inversion of water storage based on GRACE data is not comprehensive enough, and few studies have systematically summarized the status of monitoring drought, interpolation, and reconstruction based on GRACE data. Firstly, this study briefly introduces the application fields of GRACE data, and discusses the advantages and disadvantages of the two data processing methods. Then, the application status and existing problems of GRACE data in the verification and uncertainty of inversion results, terrestrial water storage anomalies, groundwater storage anomalies, drought evolution and response, and interpolation and reconstruction were analyzed and summarized. Finally, further research about GRACE was suggested to carry out in the aspects of exploring the impact of changing environments on water storage anomalies, reducing the uncertainty of GRACE data, constructing a suitable drought index for drought monitoring, improving the accuracy of interpolation and reconstruction, and improving spatio-temporal resolution. The study is aiming to provide reference and insight for related research using GRACE data.

Key words: GRACE    Water storage anomalies    Drought    Interpolation and reconstruction    Hydrology
收稿日期: 2022-07-07 出版日期: 2023-11-07
ZTFLH:  P228  
基金资助: 水利部重大科技项目“气候变化背景下特大干旱风险识别及应对策略”(SKS-2022018);国家自然科学基金项目“生态干旱与气象干旱和地下水干旱的互馈机制及生态干旱脆弱性评估方法研究”(52079111);国家自然科学基金项目“干旱传递机理及综合干旱评估方法”(51879222)
通讯作者: 粟晓玲     E-mail: cycjd1997@nwafu.edu.cn;xiaolingsu@nwafu.edu.cn
作者简介: 褚江东(1997—),男,山东昌邑人,博士研究生,主要从事流域水文模拟研究。E?mail:cycjd1997@nwafu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
褚江东
粟晓玲
姜田亮
胡雪雪
张特
吴海江

引用本文:

褚江东,粟晓玲,姜田亮,胡雪雪,张特,吴海江. GRACE数据反演水储量及监测干旱的应用现状与展望[J]. 遥感技术与应用, 2023, 38(5): 1003-1016.

Jiangdong CHU,Xiaoling SU,Tianling JIANG,Xuexue HU,Te ZHANG,Haijiang WU. Application Status and Prospect of Water Storage and Drought Monitoring based on GRACE Data. Remote Sensing Technology and Application, 2023, 38(5): 1003-1016.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.5.1003        http://www.rsta.ac.cn/CN/Y2023/V38/I5/1003

图1  中英文论文逐年发表数量图(截至2022年12月31日)
图2  全球陆地水储量2002年4月~2021年3月期间的变化速率图
干旱类别干旱指数构建方法代表文献
水文干旱TSDI借鉴PDSI的构建方法Yirdaw等[76],Cao等[77]
MTSDI结合信号分解方法改进TSDIHosseini-Moghari等[78]
GHDI借鉴PHDI的构建方法Yi等[74]
STI借鉴SPI的构建方法Cui等[75]

GRACE-DSI

/SWSI

对逐月数据进行标准化

冉艳红等[21],Zhao等[79]

Liu等[80],王文等[81]

WSDI去除逐月平均值后进行标准化

邓梓锋等[82],Sinha等[83]

Deng等[84],Sun等[85],瞿伟等[86]

地下水干旱GGDI去除逐月平均值后进行标准化Thomas等[22],Wang等[87],Satish等[88]

GRACE-GDI

/GWSA-DSI

借鉴GRACE-DSI的构建方法粟晓玲等[24],Han等[89],Zhu和Zhang[90]
综合干旱CCDI陆地水储量变化和降水变化均去除逐月平均值后相加,再进行标准化Sinha等[91],Xu等[92]
表1  基于GRACE数据构建的干旱指数研究进展
1 TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE measurements of mass variability in the earth system[J]. Science,2004,305(5683):503-505.DOI:10.1126/science. 1099192
doi: 10.1126/science. 1099192
2 RODELL M, VELICOGNA I, FAMIGLIETTI J S. Satellite-based estimates of groundwater depletion in India[J]. Nature,2009,460(7258):999-1002. DOI:10.1038/nature08238
doi: 10.1038/nature08238
3 RODELL M, FAMIGLIETTI J S, WIESE D N, et al. Emerging trends in global freshwater availability[J]. Nature, 2018, 557(7707): 651-659. DOI: 10.1038/s41586-018-0123-1
doi: 10.1038/s41586-018-0123-1
4 LONG Di, LI Xueying, LI Xingdong, et al. Remote sensing retrieval of water storage changes and underlying climatic mechanisms over the Tibetan Plateau during 2000—2020[J]. Advances in Water Science, 2022, 33(3): 375-389.
4 龙笛, 李雪莹, 李兴东, 等. 遥感反演2000—2020年青藏高原水储量变化及其驱动机制[J]. 水科学进展, 2022, 33(3): 375-389.
5 YANG Junyan, SUN Wenke. The theory and method of determining dislocation Love number and Green’s function using geodetic data[J]. Chinese Journal of Geophysics, 2020,63(8): 2912-2923.
5 杨君妍, 孙文科. 利用大地测量数据反演地震位错Love数和格林函数的理论与方法[J]. 地球物理学报, 2020, 63(8): 2912-2923.
6 LIU Han, WEI Hui, ZOU Xiancai. Precise GNSS phase velocity determination for GRACE Follow-On satellites[J]. Acta Geodaetica et Cartographica Sinica, 2021, 20(12): 1772-1779.
6 刘晗, 魏辉, 邹贤才. GRACE Follow-On卫星的星载GNSS相位测速法[J]. 测绘学报, 2021, 50(12): 1772-1779.
7 ZOU Zhengbo, ZHANG Yi, TAN Hongbo, et al. Study on gravity variation of the epicenter and surrounding areas of Maduo and Yangbi earthquakes during 2002-2021 by gravity satellite[J]. Seismology and Geology, 2021, 43(4): 999-1012.
7 邹正波, 张毅, 谈洪波, 等. 利用重力卫星研究青海玛多及云南漾濞地震周边2002—2021年重力变化[J]. 地震地质, 2021, 43(4): 999-1012.
8 CHEN Wei, ZHONG Min, FENG Wei, et al. Using GRACE/GRACE-FO and Swarm to estimate ice-sheets mass loss in Antarctica and Greenland during 2002-2020[J]. Chinese Journal of Geophysics, 2022, 65(3): 952-964.
8 陈威, 钟敏, 冯伟, 等. 基于GRACE/GRACE-FO和Swarm卫星研究2002—2020年南极和格陵兰岛冰盖质量时空变化[J]. 地球物理学报, 2022, 65(3): 952-964.
9 LOOMIS B D, RACHLIN K E, WIESE D N, et al. Replacing GRACE/GRACE-FO C-30 with satellite laser ranging: Impacts on Antarctic ice sheet mass change[J]. Geophysical Research Letters, 2020,47: e2019GL085488. DOI: 10.1029/2019GL085488
doi: 10.1029/2019GL085488
10 LI Yang, GUO Jinyun, SUN Yü, et al. Inversion of global sea level change and its component contributions by combining time-varying gravity data and altimetry data[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(8): 1768-1778.
10 李杨, 郭金运, 孙玉, 等. 联合时变重力数据与测高数据反演全球海平面变化及其分量贡献[J]. 测绘学报, 2022, 51(8): 1768-1778.
11 RAJ R P, ANDERSEN O B, JOHANNESSEN J A, et al. Arctic sea level budget assessment during the GRACE/Argo time period[J]. Remote Sensing, 2020, 12(17): 2837. DOI: 10.3390/rs12172837
doi: 10.3390/rs12172837
12 TAPLEY B D, WATKINS M M, FLECHTNER F, et al. Contributions of GRACE to understanding climate change[J]. Nature Climate Change,2019,9(5):358-369. DOI:10.1038/s41558-019-0456-2
doi: 10.1038/s41558-019-0456-2
13 JIANG D, WANG J H, HUANG Y H, et al. The review of GRACE data applications in terrestrial hydrology monitoring[J]. Advances in Meteorology, 2014, 2014: 725131. DOI: 10.1155/2014/725131
doi: 10.1155/2014/725131
14 PENG Cong, ZHOU Xinghua, KU Anbang. Review on the domestic applications of GRACE gravity satellite data[J]. Hydrographic Surveying and Charting, 2017, 37(6): 9-12.
14 彭聪, 周兴华, 库安邦. GRACE重力卫星数据国内应用研究现状综述[J]. 海洋测绘, 2017, 37(6): 9-12.
15 LIU Liu, WANG Xuanxuan, NIU Qiankun, et al. Evolution characteristic of terrestrial water storage change and its attribution analysis over the Yarlung Zangbo River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(14): 135-144.
15 刘浏, 王宣宣, 牛乾坤, 等. 雅鲁藏布江流域陆地水储量变化特征及归因[J]. 农业工程学报, 2021, 37(14): 135-144.
16 CHEN Wei, ZHONG Min, FENG Wei, et al. Effects of two strong ENSO events on terrestrial water storage anomalies in China from GRACE during 2005—2017[J]. Chinese Journal of Geophysics, 2020, 63(1): 141-154.
16 陈威, 钟敏, 冯伟, 等. 2005—2017年两次强ENSO事件对中国区域陆地水储量变化影响的卫星重力观测[J]. 地球物理学报, 2020, 63(1): 141-154.
17 LI Shu, SHI Pengfei, GU Xiaowei, et al. GRACE-based monitoring groundwater change in coal mining areas[J]. Journal of Hydraulic Engineering, 2021, 52(12): 1439-1448.
17 李舒, 师鹏飞, 谷晓伟, 等. GRACE重力卫星监测煤矿开采区地下水变化研究[J]. 水利学报, 2021, 52(12): 1439-1448.
18 LONG D, YANG W T, SCANLON B R, et al. South-to-North water diversion stabilizing Beijing’s groundwater levels[J]. Nature Communications, 2020, 11: 3665. DOI: 10.1038/s41467-020-17428-6
doi: 10.1038/s41467-020-17428-6
19 FENG Guiping, SONG Qingtao, JIANG Xingwei. Global groundwater storage changes and characteristics observed by satellite gravimetry[J]. Remote Sensing Technology and Application, 2019, 34(4): 822-828.
19 冯贵平, 宋清涛, 蒋兴伟. 卫星重力监测全球地下水储量变化及其特征[J]. 遥感技术与应用, 2019, 34(4): 822-828.
20 LONG Di, YANG Wenting, SUN Zhangli, et al. GRACE satellite-based estimation of groundwater storage changes and water balance analysis for the Haihe River Basin[J]. Journal of Hydraulic Engineering, 2023, 54(3): 255-267.
20 龙笛, 杨文婷, 孙章丽, 等. 海河平原地下水储量变化的重力卫星反演和流域水量平衡[J]. 水利学报, 2023, 54(3): 255-267.
21 RAN Yanhong, ZHONG Min, CHEN Wei, et al. Monitoring the extreme drought in the middle and lower reaches of the Yangtze River in 2019 from GRACE-FO satellites[J]. Chinese Science Bulletin, 2021, 66(1): 107-117.
21 冉艳红, 钟敏, 陈威, 等. 利用GRACE-FO重力卫星探测2019年长江中下游极端干旱[J]. 科学通报, 2021, 66(1): 107-117.
22 THOMAS B F, FAMIGLIETTI J S, LANDERER F W, et al. GRACE groundwater drought index:Evaluation of California Central Valley groundwater drought[J]. Remote Sensing of Environment, 2017, 198: 384-392. DOI: 10.1016/j.rse.2017.06.026
doi: 10.1016/j.rse.2017.06.026
23 HAN Z M, HUANG S Z, HUANG Q, et al. Propagation dynamics from meteorological to groundwater drought and their possible influence factors[J]. Journal of Hydrology,2019,578:124102. DOI:10.1016/j.jhydrol. 2019. 124102
doi: 10.1016/j.jhydrol. 2019. 124102
24 SU Xiaoling, CHU Jiangdong, ZHANG Te, et al. Spatio-temporal evolution trend of groundwater drought and its dynamic response to meteorological drought in Northwest China[J]. Water Resources Protection, 2022, 38(1): 34-42.
24 粟晓玲, 褚江东, 张特, 等. 西北地区地下水干旱时空演变趋势及对气象干旱的动态响应[J]. 水资源保护, 2022, 38(1): 34-42.
25 LANDERER F W, FLECHTNER F M, SAVE H, et al. Extending the global mass change data record: GRACE Follow-On instrument and science data performance[J]. Geophysical Research Letters, 2020, 47: e2020GL088306. DOI: 10.1029/2020GL088306
doi: 10.1029/2020GL088306
26 REN Liliang, WANG Yu, JIANG Shanhu, et al. GRACE and GRACE-FO -based terrestrial water storage and its influencing factor analysis of the Yellow River Basin[J]. Water Resources Protection,2022,38(4):26-32.
26 任立良,王宇,江善虎,等. 基于GRACE和GRACE-FO的黄河流域陆地水储量及影响因素分析[J]. 水资源保护,2022,38(4):26-32.
27 SUN Z L, LONG D, YANG W T, et al. Reconstruction of GRACE data on changes in total water storage over the global land surface and 60 basins[J]. Water Resources Research, 2020, 55: e2019WR026250. DOI: 10.1029/2019WR026250
doi: 10.1029/2019WR026250
28 LI F P, KUSCHE J, RIETBROEK R, et al. Comparison of data-driven techniques to reconstruct (1992-2002) and predict (2017-2018) GRACE-like gridded total water storage changes using climate inputs[J]. Water Resources Research, 2020, 56: e2019WR026551. DOI: 10.1029/2019WR026551
doi: 10.1029/2019WR026551
29 ZHONG Y L, FENG W, HUMPHREY V, et al. Human-induced and climate-driven contributions to water storage variations in the Haihe River Basin, China[J]. Remote Sensing, 2019, 11(24): 3050. DOI: 10.3390/rs11243050
doi: 10.3390/rs11243050
30 XIONG J H, YIN J B, GUO S L, et al. Continuity of terrestrial water storage variability and trends across mainland China monitored by the GRACE and GRACE-Follow on satellites[J]. Journal of Hydrology, 2021, 599: 126308. DOI: 10.1016/j.jhydrol.2021.126308
doi: 10.1016/j.jhydrol.2021.126308
31 ZHANG Lan, SUN Wenke. Progress and prospect of GRACE Mascon product and its application[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(1): 35-52.
31 张岚, 孙文科. 重力卫星GRACE Mascon产品的应用研究进展与展望[J]. 地球与行星物理论评, 2022, 53(1): 35-52.
32 FENG W. GRAMAT: A comprehensive Matlab toolbox for estimating global mass variations from GRACE satellite data[J]. Earth Science Informatics,2019,12(3):389-404. DOI: 10.1007/s12145-018-0368-0
doi: 10.1007/s12145-018-0368-0
33 CHEN H, ZHANG W C, NIE N, et al. Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations[J]. Science of The Total Environment,2019,649:372-387. DOI: 10.1016/j.scitotenv.2018. 08.352
doi: 10.1016/j.scitotenv.2018. 08.352
34 CAO Yang, YANG Mingxiang, LEI Xiaohui, et al. Review on the application of GRACE satellite in China’s terrestrial water storage[J]. China Rural Water and Hydropower, 2017(8): 74-79.
34 曹阳, 杨明祥, 雷晓辉, 等. GRACE卫星数据在国内陆地水储量反演中的应用综述[J]. 中国农村水利水电, 2017(8): 74-79.
35 HU Baoyi, WANG Lei. Terrestrial water storage change and its attribution: a review and perspective[J]. Water Resources and Hydropower Engineering, 2021, 52(5): 13-25.
35 胡宝怡, 王磊. 陆地水储量变化及其归因:研究综述及展望[J]. 水利水电技术, 2021, 52(5): 13-25.
36 HU Litang, SUN Kangning, YIN Wenjie. Review on the application of GRACE satellite in regional groundwater management[J]. Journal of Earth Sciences and Environment, 2016, 38(2): 258-266.
36 胡立堂, 孙康宁, 尹文杰. GRACE卫星在区域地下水管理中的应用潜力综述[J]. 地球科学与环境学报, 2016, 38(2): 258-266.
37 FRAPPART F, RAMILLIEN G. Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: a review[J]. Remote Sensing, 2018, 10(6): 829. DOI: 10.3390/rs10060829
doi: 10.3390/rs10060829
38 TU Mengzhao, LIU Zhifeng, HE Chunyang, et al. Research progress of groundwater storage changes monitoring in China based on GRACE satellite data[J]. Advances in Earth Science, 2020, 35(6): 643-656.
38 涂梦昭, 刘志锋, 何春阳, 等. 基于GRACE卫星数据的中国地下水储量监测进展[J]. 地球科学进展, 2020, 35(6): 643-656.
39 ZHONG Y L, ZHONG M, FENG W, et al. Groundwater depletion in the West Liaohe River Basin, China and its implications revealed by GRACE and in situ measurements[J]. Remote Sensing, 2018, 10(4): 493. DOI: 10.3390/rs 10040493
doi: 10.3390/rs 10040493
40 WEI Guanghui, YANG Peng, ZHOU Haiying, et al. An Analysis of the drought characteristics and driving factors of Tarim River Basin based on downscaled terrestrial water storage from GRACE[J]. China Rural Water and Hydropower, 2020(7):12-19.
40 魏光辉, 杨鹏, 周海鹰, 等. 基于GRACE陆地水储量降尺度的塔里木河流域干旱特征及驱动因子分析[J]. 中国农村水利水电, 2020(7):12-19.
41 TAO Zhengguang, TAO Tingye, DING Xin, et al. Groundwater storage changes in Anhui province derived from GRACE and GLDAS hydrological model[J]. Progress in Geophysics, 2021, 36(4):1456-1463.
41 陶征广, 陶庭叶, 丁鑫, 等. 基于GRACE和GLDAS水文模型反演安徽省地下水储量变化[J]. 地球物理学进展, 2021, 36(4): 1456-1463.
42 XIONG Jinghua, WANG Zhaoli. Spatiotemporal changes of terrestrial water storage in the Pearl River Basin based on GRACE data[J]. Journal of China Hydrology, 2021, 41(6):33-39.
42 熊景华, 王兆礼. 基于GRACE重力卫星的珠江流域陆地水储量时空变化研究[J]. 水文, 2021, 41(6):33-39.
43 YAO Chaolong, LI Qiong, LUO Zhicai, et al. Uncertainties in GRACE-derived terrestrial water storage changes over mainland China based on a generalized Three-cornered Hat Method[J]. Chinese Journal of Geophysics, 2019, 62(3): 883-897.
43 姚朝龙, 李琼, 罗志才, 等. 利用广义三角帽方法评估GRACE反演中国大陆地区水储量变化的不确定性[J]. 地球物理学报, 2019, 62(3): 883-897.
44 NIE Ning, ZHANG Wanchang, CHEN Hao, et al. Temporal variation characteristics and attribution analysis of terrestrial water storage change in the Yangtze River basin[J]. Advances in Water Science, 2021, 32(3): 396-407.
44 聂宁, 张万昌, 陈豪, 等. 长江流域水储量变化的时间变化特征及归因分析[J]. 水科学进展, 2021, 32(3): 396-407.
45 LONG D, PAN Y, ZHOU J, et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models[J]. Remote Sensing of Environment, 2017, 192: 198-216. DOI: 10.1016/j.rse.2017.02.011
doi: 10.1016/j.rse.2017.02.011
46 MEHRNEGAR N, JONES O, SINGER M B, et al. Comparing global hydrological models and combining them with GRACE by dynamic model data averaging (DMDA)[J]. Advances in Water Resources,2020,138:103528. DOI:10.1016/j.advwatres.2020.103528
doi: 10.1016/j.advwatres.2020.103528
47 SAKUMURA C, BETTADPUR S, BRUINSMA S. Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models[J]. Geophysical Research Letters,2014,41(5):1389-1397. DOI: 10.1002/2013GL058632
doi: 10.1002/2013GL058632
48 LIU Renli, SHE Dunxian, LI Min, et al. Using satellite observations to assess applicability of GLDAS and WGHM hydrological model[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1596-1604.
48 刘任莉, 佘敦先, 李敏, 等. 利用卫星观测数据评估GLDAS与WGHM水文模型的适用性[J]. 武汉大学学报(信息科学版), 2019, 44(11): 1596-1604.
49 FENG Wei, WANG Changqing, MU Dapeng, et al. Groundwater storage variations in the North China Plain from GRACE with spatial constraints[J]. Chinese Journal of Geophysics, 2017, 60(5): 1630-1642.
49 冯伟, 王长青, 穆大鹏, 等. 基于GRACE的空间约束方法监测华北平原地下水储量变化[J]. 地球物理学报, 2017, 60(5): 1630-1642.
50 LONG D, YANG Y T, WADA Y, et al. Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China's Yangtze River Basin[J]. Remote Sensing of Environment, 2015, 168: 177-193. DOI: 10.1016/j.rse.2015.07.003
doi: 10.1016/j.rse.2015.07.003
51 WAHR J, MOLENAAR M, BRYAN F. Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30205-30229. DOI: 10.1029/98JB02844
doi: 10.1029/98JB02844
52 JING W L, ZHAO X D, YAO L, et al. Variations in terrestrial water storage in the Lancang-Mekong River basin from GRACE solutions and land surface model[J]. Journal of Hydrology,2020,580:124258. DOI: 10.1016/j.jhydrol.2019.124258
doi: 10.1016/j.jhydrol.2019.124258
53 DENG H J, PEPIN N C, LIU Q, et al. Understanding the spatial differences in terrestrial water storage variations in the Tibetan Plateau from 2002 to 2016[J]. Climatic Change, 2018,151(3-4):379-393. DOI:10.1007/s10584-018-2325-9
doi: 10.1007/s10584-018-2325-9
54 CHEN Yaning, LI Zhi, FANG Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountains, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 18-26.
54 陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
55 FENG Wei, JEAN-MICHEL L, ZHONG Min, et al. Terrestrial water storage changes in the Amazon basin measured by GRACE during 2002-2010[J]. Chinese Journal of Geophysics,2012,55(3):814-821.
55 冯伟, Jean-Michel L, 钟敏, 等. 利用重力卫星GRACE监测亚马逊流域2002—2010年的陆地水变化[J]. 地球物理学报, 2012, 55(3): 814-821.
56 HAN Z M, HUANG S Z, HUANG Q, et al. Assessing GRACE-based terrestrial water storage anomalies dynamics at multi-timescales and their correlations with teleconnection factors in Yunnan Province, China[J]. Journal of Hydrology,2019,574:836-850. DOI:10.1016/j.jhydrol.2019. 04.093
doi: 10.1016/j.jhydrol.2019. 04.093
57 SHEN Z X, ZHANG Q, SINGH V P, et al. Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia[J]. Nature Communications, 2022, 13: 1849. DOI: 10.1038/s41467-022-29544-6
doi: 10.1038/s41467-022-29544-6
58 XU Y, GONG H L, CHEN B B, et al. Long-term and seasonal variation in groundwater storage in the North China Plain based on GRACE[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 104: 102560. DOI: 10.1016/j.jag.2021.102560
doi: 10.1016/j.jag.2021.102560
59 FENG W, ZHONG M, LEMOINE J, et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements[J]. Water Resources Research, 2013, 49(4): 2110-2118. DOI: 10.1002/wrcr.20192
doi: 10.1002/wrcr.20192
60 TIWARI V M, WAHR J, SWENSON S. Dwindling groundwater resources in northern India, from satellite gravity observations[J]. Geophysical Research Letters,2009,36:L18401. DOI: 10.1029/2009GL039401
doi: 10.1029/2009GL039401
61 ZHANG Ke, JU Yan, LI Zhijia. Satellite-based reconstruction and spatiotemporal variability analysis of actual evapotranspiration in the Jinshajiang River basin, China[J]. Advances in Water Science, 2021, 32(2): 182-191.
61 张珂, 鞠艳, 李致家. 金沙江流域实际蒸散发遥感重建及时空特征分析[J]. 水科学进展, 2021, 32(2): 182-191.
62 JU Yan, ZHANG Ke, LI Bingfeng, et al. Spatiotemporal distribution of actual evapotranspiration and its influencing factors in the Jinsha River Basin[J]. Water Resources Protection, 2022, 38(6): 104-110.
62 鞠艳, 张珂, 李炳锋, 等. 金沙江流域实际蒸散发时空分布特征及其影响因子[J]. 水资源保护, 2022, 38(6): 104-110.
63 YUN Zhaode, HU Qingfang, WANG Yintang, et al. Accuracy validation of remote sensing and reanalysis evapotranspiration data: A comparative study based on GRACE and monthly water balance model[J]. Journal of Hydraulic Engineering, 2023, 54(1): 117-127.
63 云兆得, 胡庆芳, 王银堂, 等. 遥感和再分析蒸散发数据精度评估:基于GRACE和流域月水量平衡模型的比较研究[J]. 水利学报, 2023, 54(1): 117-127.
64 CASTLE S L, REAGER J T, THOMAS B F, et al. Remote detection of water management impacts on evapotranspiration in the Colorado River basin[J]. Geophysical Research Letters,2016,43,5089-5097. DOI:10.1002/2016GL068675
doi: 10.1002/2016GL068675
65 PAN Y, ZHANG C, GONG H L, et al. Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China[J]. Geophysical Research Letters, 2018, 44(1), 190-199. DOI: 10.1002/2016GL071287
doi: 10.1002/2016GL071287
66 WEI Lin, DUAN Kai, LIU Xiaodong, et al. Assessing human-induced evapotranspiration change based on multi-source data and Bayesian model averaging at the basin scale[J]. Journal of Hydraulic Engineering, 2022, 53(4): 433-444.
66 韦林, 段凯, 刘效东, 等. 基于多源数据与多模型集成的流域人为蒸散发变异评估[J]. 水利学报, 2022, 53(4): 433-444.
67 WAN Z M, ZHANG K, XUE X W, et al. Water balance-based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous United States[J]. Water Resources Research,2015,51(8):6485-6499. DOI: 10.1002/2015WR017311
doi: 10.1002/2015WR017311
68 RODELL M, CHEN J L, KATO H, et al. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE[J]. Hydrogeology Journal, 2007, 15(1): 159-166. DOI: 10.1007/s10040-006-0103-7
doi: 10.1007/s10040-006-0103-7
69 VASCO D W, KIM K H, FARR T G, et al. Using Sentinel-1 and GRACE satellite data to monitor the hydrological variations within the Tulare Basin, California[J]. Scientific Reports, 2022, 12:3867. DOI: 10.1038/s41598-022-07650-1
doi: 10.1038/s41598-022-07650-1
70 SUN Qin, XIE Zhenghui, TIAN Xiangjun. GRACE terrestrial water storage data assimilation based on the ensemble four-dimensional variational method PODEn4DVar: Method and validation[J]. Science China: Earth Sciences, 2014, 44(12): 2753-2767.
70 孙琴, 谢正辉, 田向军. 基于集合四维变分方法PODEn4DVar的GRACE陆地水储量同化:方法与验证[J]. 中国科学:地球科学, 2014, 44(12): 2753-2767.
71 SU Xiaoling, ZHANG Gengxi, FENG Kai. Progress and perspective of drought index[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(5): 9-18.
71 粟晓玲, 张更喜, 冯凯. 干旱指数研究进展与展望[J]. 水利与建筑工程学报, 2019, 17(5): 9-18.
72 MCKEE T B, DOESKEN N J, KLEIST J. The relationship of drought frequency and duration to time scales[C]∥Proceedings of the Eighth Conference on Applied Climatology. Boston: American Meteorological Society, 1993.
73 ALLEY W M. The Palmer Drought Severity Index: Limitations and assumptions[J]. Journal of Climate and Applied Meteorology, 1984, 23(7): 1100-1109. DOI: 10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2
doi: 10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2
74 YI H, WEN L X. Satellite gravity measurement monitoring terrestrial water storage change and drought in the continental United States[J]. Scientific Reports, 2016, 6: 19909. DOI: 10.1038/srep19909
doi: 10.1038/srep19909
75 CUI A H, LI J F, ZHOU Q M, et al. Use of a multiscalar GRACE-based standardized terrestrial water storage index for assessing global hydrological droughts[J]. Journal of Hydrology,2021,603:126871. DOI:10.1016/j.jhydrol. 2021.126871
doi: 10.1016/j.jhydrol. 2021.126871
76 YIRDAW S Z, SNELGROVE K R, AGBOMA C O. GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie[J]. Journal of Hydrology, 2008, 356(1-2): 84-92. DOI: 10.1016/j.jhydrol.2008.04.004
doi: 10.1016/j.jhydrol.2008.04.004
77 CAO Y P, NAN Z T, CHENG G D. GRACE gravity satellite observations of terrestrial water storage changes for drought characterization in the arid land of Northwestern China[J]. Remote Sensing,2015,7(1):1021-1047. DOI:10.3390/rs70101021
doi: 10.3390/rs70101021
78 HOSSEINI-MOGHARI S, ARAGHINEJAD S, EBRAHIMI K, et al. Introducing modified total storage deficit index (MTSDI) for drought monitoring using GRACE observations[J]. Ecological Indicators,2019,101:465-475. DOI:10.1016/j.ecolind.2019.01.002
doi: 10.1016/j.ecolind.2019.01.002
79 ZHAO M, VELICOGNAI A G, et al. A global gridded dataset of GRACE drought severity index for 2002-14: comparison with PDSI and SPEI and a case study of the Australia Millennium drought[J]. Journal of Hydrometeorology, 2017, 18(8): 2117-2129. DOI: 10.1175/JHM-D-16-0182.1
doi: 10.1175/JHM-D-16-0182.1
80 LIU X F, FENG X M, CIAIS P, et al. GRACE satellite-based drought index indicating increased impact of drought over major basins in China during 2002-2017[J]. Agricultural and Forest Meteorology, 2020, 291: 108057. DOI: 10.1016/j.agrformet.2020.108057
doi: 10.1016/j.agrformet.2020.108057
81 WANG Wen, WANG Peng, CUI Wei. A comparison of terrestrial water storage data and multiple hydrological data in the Yangtze River basin[J]. Advances in Water Science,2015,26(6):759-768.
81 王文,王鹏,崔巍.长江流域陆地水储量与多源水文数据对比分析[J]. 水科学进展,2015,26(6): 759-768.
82 DENG Zifeng, WU Xushu, WANG Zhaoli, et al. Drought monitoring based on GRACE data in the Pearl River Basin, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 179-187.
82 邓梓锋, 吴旭树, 王兆礼, 等. 基于GRACE重力卫星数据的珠江流域干旱监测[J]. 农业工程学报, 2020, 36(20): 179-187.
83 SINHA D, SYED T H, Famiglietti J S, et al. Characterizing drought in India using GRACE observations of terrestrial water storage deficit[J]. Journal of Hydrometeorology, 2017, 18(2): 381-396. DOI: 10.1175/JHM-D-16-0047.1
doi: 10.1175/JHM-D-16-0047.1
84 DENG S S, LIU S X, MO X G. Assessment and attribution of China’s droughts using an integrated drought index derived from GRACE and GRACE-FO data[J]. Journal of Hydrology, 2021, 603: 127170. DOI: 10.1016/j.jhydrol. 2021.127170
doi: 10.1016/j.jhydrol. 2021.127170
85 SUN Z L, ZHU X F, PAN Y Z, et al. Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China[J]. Science of The Total Environment, 2018, 634: 727-738. DOI: 10.1016/j.scitotenv.2018.03.292
doi: 10.1016/j.scitotenv.2018.03.292
86 QU Wei, JIN Zehui, ZHANG Qin, et al. Drought characteristics of the Yellow River basin from 2002 to 2020 revealed by GRACE and GRACE Follow-On data[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 714-724.
86 瞿伟, 晋泽辉, 张勤, 等. GRACE与GRACE Follow-On重力卫星数据揭示出的黄河流域2002—2020年干旱特征[J]. 测绘学报, 2023, 52(5): 714-724.
87 WANG F, WANG Z M, YANG H B, et al. Utilizing GRACE-based groundwater drought index for drought characterization and teleconnection factors analysis in the North China Plain[J].Journal of Hydrology,2020,585:124849. DOI: 10.1016/j.jhydrol.2020.124849
doi: 10.1016/j.jhydrol.2020.124849
88 SATISH K K, VENKATA R E, SRIDHAR V. Tracking seasonal and monthly drought with GRACE-based terrestrial water storage assessments over major river basins in South India[J]. Science of the Total Environment,2020,763:142994. DOI: 10.1016/j.scitotenv.2020.142994
doi: 10.1016/j.scitotenv.2020.142994
89 HAN Z M, HUANG S Z, HUANG Q, et al. Effects of vegetation restoration on groundwater drought in the Loess Plateau, China[J]. Journal of Hydrology, 2020, 591:125566. DOI: 10.1016/j.jhydrol.2020.125566
doi: 10.1016/j.jhydrol.2020.125566
90 ZHU Q, ZHANG H. Groundwater drought characteristics and its influencing factors with corresponding quantitative contribution over the two largest catchments in China[J]. Journal of Hydrology, 2022, 609: 127759. DOI: 10.1016/j.jhydrol.2022.127759
doi: 10.1016/j.jhydrol.2022.127759
91 SINHA D, SYED T H, REAGER J T. Utilizing combined deviations of precipitation and GRACE-based terrestrial water storage as a metric for drought characterization: A case study over major Indian river basins[J]. Journal of Hydrology, 2019, 572: 294-307. DOI: 10.1016/j.jhydrol.2019.02.053
doi: 10.1016/j.jhydrol.2019.02.053
92 XU Y Y, ZHU X Y, CHENG X, et al. Drought assessment of China in 2002-2017 based on a comprehensive drought index[J]. Agricultural and Forest Meteorology, 2022, 319: 108922. DOI: 10.1016/j.agrformet.2022.108922 .
doi: 10.1016/j.agrformet.2022.108922
93 WU Zhiyong, CHENG Dandan, HE Hai, et al. Research progress of composite drought index[J]. Water Resources Protection, 2021, 37(1): 36-45.
93 吴志勇, 程丹丹, 何海, 等. 综合干旱指数研究进展[J]. 水资源保护, 2021, 37(1): 36-45.
94 YUAN Ruiqiang, QING Song. Response of the normalized difference vegetation index to water storage in terrestrial basin of the yellow river basin: taking 2002-2015 as an example[J]. Journal of Irrigation and Drainage, 2020, 39(10): 115-122.
94 袁瑞强, 青松. 2002―2015年黄河流域NDVI对陆地水储量的响应[J]. 灌溉排水学报, 2020, 39(10): 115-122.
95 ALTUNKAYNAK A, JALILZADNEZAMABAD A. Extended lead time accurate forecasting of palmer drought severity index using hybrid wavelet-fuzzy and machine learning techniques[J]. Journal of Hydrology, 2021, 601: 126619. DOI: 10.1016/j.jhydrol.2021.126619
doi: 10.1016/j.jhydrol.2021.126619
96 YIN W J, FAN Z W, TANGDAMRONGSUB N, et al. Comparison of physical and data-driven models to forecast groundwater level changes with the inclusion of GRACE-a case study over the state of Victoria, Australia[J]. Journal of Hydrology, 2021, 602: 126735. DOI: 10.1016/j.jhydrol. 2021.126735
doi: 10.1016/j.jhydrol. 2021.126735
97 LIANG Wentao, WEI Linyong, LIU Yi, et al. Increase in terrestrial water storage and possible causes over the source region of the Yellow River in recent two decades[J]. China Rural Water and Hydropower, 2022, 479(9): 70-74.
97 梁文涛, 卫林勇, 刘懿, 等. 近20年黄河源区陆地水储量增加及其可能原因分析[J]. 中国农村水利水电, 2022, 479(9): 70-74.
98 WEI L Y, JIANG S H, REN L L, et al. Spatiotemporal changes of terrestrial water storage and possible causes in the closed Qaidam Basin, China using GRACE and GRACE Follow-On data[J]. Journal of Hydrology, 2021, 598: 126274. DOI: 10.1016/j.jhydrol.2021.126274
doi: 10.1016/j.jhydrol.2021.126274
99 LI W Q, WANG W, ZHANG C Y, et al. Bridging terrestrial water storage anomaly during GRACE/GRACE-FO gap using SSA method: A case study in China[J]. Sensors, 2019, 19, 4144. DOI: 10.3390/s19194144
doi: 10.3390/s19194144
100 LAI Y, ZHANG B, YAO Y B, et al. Reconstructing the data gap between GRACE and GRACE follow-on at the basin scale using artificial neural network[J]. Science of The Total Environment, 2022, 823: 153770. DOI: 10.1016/j.scitotenv.2022.153770
doi: 10.1016/j.scitotenv.2022.153770
101 AHMED M, SULTAN M, ELBAYOUMI T, et al. Forecasting GRACE data over the African watersheds using artificial neural networks[J]. Remote Sensing, 2019, 11(15): 1769. DOI: 10.3390/rs11151769
doi: 10.3390/rs11151769
102 CHU Jiangdong, SU Xiaoling, WU Haijiang, et al. Analysis of terrestrial water storage and its component changes in China from 2002 to 2021[J]. Water Resources Protection, 2022, 39(3): 170-178.
102 褚江东, 粟晓玲, 吴海江, 等. 2002—2021年中国陆地水储量及其组分变化分析[J]. 水资源保护, 2022, 39(3): 170-178.
103 ZHANG X, LI J B, DONG Q J, et al. Bridging the gap between GRACE and GRACE-FO using a hydrological model[J]. Science of The Total Environment, 2022, 822: 153659. DOI: 10.1016/j.scitotenv.2022.153659
doi: 10.1016/j.scitotenv.2022.153659
104 HUMPREY V, GUDMUNDSSON L. GRACE-REC: a reconstruction of climate-driven water storage changes over the last century[J]. Earth System Science Data, 2019, 11: 1153-1170. DOI: 10.5194/essd-11-1153-2019
doi: 10.5194/essd-11-1153-2019
105 ZHONG Y L, FENG W, HUMPHREY V, et al. Human-induced and climate-driven contributions to water storage variations in the Haihe River Basin, China[J]. Remote Sensing, 2019, 11: 3050. DOI: 10.3390/rs11243050
doi: 10.3390/rs11243050
106 SUN A Y, SCANLON B R, ZHANG Z Z, et al. Combining physically-based modeling and deep learning for fusing GRACE satellite data: Can we learn from mismatch?[J]. Water Resources Research, 2019, 55(2): 1179-1195. DOI: 10.1029/2018WR023333
doi: 10.1029/2018WR023333
107 YANG Yuanhang, YIN Jiabo, GUO Shenglian, et al. Projection of terrestrial drought evolution and its eco-hydrological effects in China[J]. Chinese Science Bulletin, 2023, 68(7): 817-829.
107 杨远航,尹家波,郭生练,等.中国陆域干旱演变预估及其生态水文效应[J].科学通报,2023,68(7):817-829.
108 SOLTANI S S, ATAIE-ASHTIANI B, SIMMONS C T. Review of assimilating GRACE terrestrial water storage data into hydrological models: Advances, challenges and opportunities[J]. Earth-Science Reviews, 2021, 213: 103487. DOI: 10.1016/j.earscirev.2020.103487
doi: 10.1016/j.earscirev.2020.103487
109 WANG Qiuyu, RAO Weilong, ZHANG Lan, et al. Progress and prospect of GRACE time-varying gravity signal inversion method[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(9):104-116.
109 汪秋昱, 饶维龙, 张岚, 等. GRACE时变重力信号反演方法研究的进展和展望[J]. 华中科技大学(自然科学版), 2022, 50(9): 104-116.
110 CHU J D, SU X L, JIANG T L, et al. Filling the gap between GRACE and GRACE-FO data using a model integrating variational mode decomposition and long short-term memory: A case study of Northwest China[J]. Environmental Earth Sciences, 2023, 82(1): 38. DOI: 10.1007/s12665-022-10716-y
doi: 10.1007/s12665-022-10716-y
111 YIN W J, HU L T, ZHANG M L, et al. Statistical downscaling of GRACE-Derived groundwater storage using ET data in the North China Plain[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(11): 5973-5987. DOI: 10.1029/2017JD027468
doi: 10.1029/2017JD027468
112 WANG Jie, BIAN Yuhan, LIU Junjie, et al. Downscaling analysis of GRACE terrestrial water storage changes based on GLDAS in China[J]. Water Resources and Power, 2020, 38(2): 31-35.
112 王洁, 边宇晗, 刘俊杰, 等. 基于同化数据的GRACE卫星反演中国陆地水储量变化降尺度分析[J]. 水电能源科学, 2020, 38(2): 31-35.
113 ZHANG J X, LIU K, WANG M. Downscaling groundwater storage data in China to a 1-km resolution using machine learning methods[J]. Remote Sensing, 2021, 13(3): 523. DOI: 10.3390/rs13030523
doi: 10.3390/rs13030523
114 ZUO J P, XU J H, CHEN Y N, et al. Downscaling simulation of groundwater storage in the Tarim River basin in northwest China based on GRACE data[J]. Physics and Chemistry of the Earth, 2021, 123: 103042. DOI: 10.1016/j.pce.2021.103042
doi: 10.1016/j.pce.2021.103042
115 KHORRAMI B, ALI S, GUNDUZ O, et al. Investigating the local-scale fluctuations of groundwater storage by using downscaled GRACE/GRACE-FO JPL Mascon product based on machine learning (ML) Algorithm[J]. Water Resources Management,2023, DOI:10.1007/s11269-023-03509-w
doi: 10.1007/s11269-023-03509-w
116 XU Zhongfeng, HAN Ying, YANG Zongliang. Review of research on regional climate dynamic downscaling methods[J]. Scientia Sinica Terrae, 2019, 49(3): 487-498.
116 徐忠峰, 韩瑛, 杨宗良. 区域气候动力降尺度方法研究综述[J]. 中国科学:地球科学, 2019, 49(3): 487-498.
117 RAN Jiangjun, YAN Zhengwen, WU Yunlong, et al. Research status and future perspectives in next generation gravity mission[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 841-857.
117 冉将军, 闫政文,吴云龙, 等. 下一代重力卫星任务研究概述与未来展望[J]. 武汉大学学报(信息科学版), 2023, 48(6): 841-857.
[1] 刘希鸣,阿里木·赛买提,王伟,吉力力·阿不都外力. 基于LightGBM和多光谱—SAR多特征综合的中亚干旱区城市不透水面提取[J]. 遥感技术与应用, 2023, 38(2): 319-331.
[2] 田畅,王让会,彭擎,刘春伟,周丽敏. 基于不同干旱指数的祁连山国家公园水热特征分析[J]. 遥感技术与应用, 2023, 38(1): 200-213.
[3] 马毓窕,穆晓东,侯鹏,孙林,张邻晶. 海南岛干旱特征遥感识别及时空变化研究[J]. 遥感技术与应用, 2022, 37(5): 1159-1169.
[4] 刘礼杨,杨雪琴,陈修治,苏泳娴,任加顺,黄光庆. 基于AMSR-E的微波温度植被干旱指数的应用[J]. 遥感技术与应用, 2022, 37(4): 961-970.
[5] 杜恩宇,陈方,贾慧聪,王雷,杨阿强. 基于Landsat 8卫星数据的解放闸灌域灌溉面积监测研究[J]. 遥感技术与应用, 2022, 37(3): 620-628.
[6] 盖一铭,阿里木·赛买提,王伟,吉力力·阿不都外力. 基于样本迁移的干旱区地表覆盖快速更新[J]. 遥感技术与应用, 2022, 37(2): 333-341.
[7] 孙景霞,张冬有,侯宇初. 基于多源遥感数据协同反演森林地表土壤水分研究[J]. 遥感技术与应用, 2021, 36(3): 564-570.
[8] 冯哲颖,岳林蔚,沈焕锋. 基于多源水文数据融合的GRACE水储量精度校正[J]. 遥感技术与应用, 2021, 36(3): 605-617.
[9] 刘莹,朱秀芳,徐昆,陈令仪,郭锐. 干旱对灌溉和雨养农田生态系统生产力的影响对比分析[J]. 遥感技术与应用, 2021, 36(2): 381-390.
[10] 张茂,张霞,胡光成,王楠. 遥感干旱指数在洛川苹果干旱监测中的适用性分析[J]. 遥感技术与应用, 2021, 36(1): 187-197.
[11] 沈谦,朱长明,张新,黄巧华,杨程子. 1992~2013我国干旱区城市不透水遥感制图与扩张过程分析[J]. 遥感技术与应用, 2020, 35(5): 1178-1186.
[12] 陈馨,匡文慧. 基于云平台的中哈干旱区典型城市地表覆盖变化遥感监测与比较[J]. 遥感技术与应用, 2020, 35(3): 548-557.
[13] 李雷,郑兴明,赵凯,李晓峰,王广蕊. 基于CCI土壤水分产品的干旱指数精度评价及其对东北地区粮食产量的影响[J]. 遥感技术与应用, 2020, 35(1): 111-119.
[14] 冯贵平,宋清涛,蒋兴伟. 卫星重力监测全球地下水储量变化及其特征[J]. 遥感技术与应用, 2019, 34(4): 822-828.
[15] 王展鹏,宋立生,兰子焱,杨梦颖,鲁丹. 考虑下垫面类型的干旱指数比较研究[J]. 遥感技术与应用, 2019, 34(4): 865-873.