Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (5): 1017-1027    DOI: 10.11873/j.issn.1004-0323.2023.5.1017
InSAR专栏     
面向双站SAR系统的长波PolInSAR目标自适应分解
符龙崇1(),朱建军1(),付海强1,解清华2,韩文涛1
1.中南大学地球科学与信息物理学院,湖南 长沙 410083
2.中国地质大学(武汉)地理与信息工程学院,湖北 武汉 430074
Adaptive Decomposition of Long-Wave PolInSAR Targets for The Bistatic SAR System
Longchong FU1(),Jianjun ZHU1(),Haiqiang FU1,Qinghua XIE2,Wentao HAN1
1.School of Geociences and Info-Physics,Central South University,Changsha 410083,China
2.School of Geography and Information Engineering,China University of Geosciences (Wuhan),Wuhan 430074,China
 全文: PDF(7789 KB)   HTML
摘要:

双站SAR系统无时间去相干的特性,结合长波的强穿透能力,在估计植被结构参数上应用前景极大,借助极化干涉SAR分解技术研究双站SAR系统下的植被区散射过程,对揭示信号与地物的交互过程,构建植被结构参数反演模型具有重要意义。考虑模型适用性和双站SAR系统存在的不可忽略的去相干,将极化干涉矩阵表达为极化方位角扩展的广义表面散射矩阵、广义二次散射矩阵和Neumann自适应体散射矩阵与其对应相干成分乘积的和的形式,基于残差最小二乘准则,使用非线性最小二乘优化技术同时求解所有模型参数。使用BioSAR 2008项目的L波段全极化机载数据对方法进行测试,获取了实验区不同散射机制的相干成分、相位分布和能量信息,结合机载激光雷达数据进行了分析。结果表明:分解方法对植被区不同散射机制区分良好,有效抑制了体散射功率高估;植被区表面散射在垂直向上的分布与植被高度和穿透程度存在联系,体散射相位中心高度与机载激光雷达植被高接近且趋势一致;有效估计了散射机制的相干性。

关键词: 双站SAR极化干涉测量长波目标自适应分解植被区散射机制    
Abstract:

The Bistatic SAR system has no temporal decoherence, and combined with the powerful penetration capability of long wave, it has great prospects for application in estimating vegetation structure parameters. Using polarimetric interferometric SAR decomposition technique to study the scattering process of vegetation area in bistatic SAR system is of great significance for revealing the interaction between signal and ground object and constructing the inversion model of vegetation structure parameters. Considering the applicability of the model and the non-negligible decoherence in bistatic SAR system, the polarization interference matrix is expressed as the sum of the product of the polarization azimuth-extended generalized surface scattering matrix, the generalized quadratic scattering matrix and the Neumann adaptive volume scattering matrix with their corresponding coherent components. Solving all model parameters simultaneously using nonlinear least squares optimization technique based on residual least squares criterion. The method is tested using L-band fully polarimetric airborne data from the BioSAR 2008 project. The coherent components, phase distribution and energy information of different scattering mechanisms in the experimental area are obtained and analyzed with airborne lidar data. The results show that the decomposition method can well distinguish different scattering mechanisms in vegetation area, effectively suppress the overestimation of volume scattering power, and better fit with the actual data. The vertical distribution of surface scattering in the vegetation area is related to the vegetation height and penetration degree. The height of the volume scattering phase center is close to and the trend is consistent with the vegetation height of the airborne lidar. The coherence of the scattering mechanism is effectively estimated.

Key words: The Bistatic SAR polarimetric interferometry    Long wave    Adaptive decomposition of target    Scattering mechanism of vegetation zone
收稿日期: 2022-07-07 出版日期: 2023-11-07
ZTFLH:  TN911.7  
基金资助: 国家自然科学基金项目“低矮植被覆盖下的双站极化干涉SAR高精度地形测绘研究”(41820104005);国家自然科学基金项目“顾及森林随机体非随机朝向/非均匀分布的长波PolInSAR林下地形反演”(41904004);国家自然科学基金项目“基于长波SAR数据的植被覆盖区时序极化InSAR地表形变监测理论与方法”(42030112);国家自然科学基金项目“顾及植被形态结构异质性的极化干涉SAR林下地形反演研究”(41804004)
通讯作者: 朱建军     E-mail: flccsu@csu.edu.cn;zjj@csu.edu.cn
作者简介: 符龙崇(1998-),男,湖南泸溪人,硕士研究生,主要从事PolInSAR植被区散射机理解译与参数反演研究。E?mail:flccsu@csu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
符龙崇
朱建军
付海强
解清华
韩文涛

引用本文:

符龙崇,朱建军,付海强,解清华,韩文涛. 面向双站SAR系统的长波PolInSAR目标自适应分解[J]. 遥感技术与应用, 2023, 38(5): 1017-1027.

Longchong FU,Jianjun ZHU,Haiqiang FU,Qinghua XIE,Wentao HAN. Adaptive Decomposition of Long-Wave PolInSAR Targets for The Bistatic SAR System. Remote Sensing Technology and Application, 2023, 38(5): 1017-1027.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.5.1017        http://www.rsta.ac.cn/CN/Y2023/V38/I5/1017

图1  双站SAR系统下二次散射相位贡献射线图
图2  分解算法流程图
参数下边界上边界参数下边界上边界
fd0Span|δ|01
|α|201arg(δ)-ππ
arg(α)-ππτ01
fs0Span|γd|01
|β|201arg(γd)?0-5π/180?0+5π/180
arg(β)-5π/1805π/180|γs|01
θd-π/4π/4arg(γs)?0-Δl?0+Δu
θs-π/4π/4|γv|01
fv0Spanarg(γv)?0?0+2π
表1  模型参数的上下边界
图3  研究区域图像
图4  3种散射机制功率贡献剖面图
图5  两种分解方法获取的各散射机制功率比例分布图与饼状图(BPTAD分解:Pd代表二次散射,Ps代表表面散射,Pv代表体散射))
图6  各散射机制的相位及相干性剖面图
图7  各散射机制的相干性分布图
1 SUN Yafei, JIANG Liming, LIU Lin, et al. Generating and evaluating digital terrain model with TanDEM-X bistatic SAR interferometry[J]. Geomatics and Information Science of Wuhan University,2016,41(1): 100-105.
1 孙亚飞, 江利明, 柳林, 等. TanDEM-X双站InSAR地形提取及精度评估[J]. 武汉大学学报(信息科学版), 2016, 41(1): 100-105.
2 CHEN S W, LI Y Z, WANG X S, et al. Modeling and interpretation of scattering mechanisms in polarimetric Synthetic Aperture Radar: Advances and perspectives[J]. IEEE Signal Processing Magazine, 2014, 31(4): 79-89.
3 HAN W, FU H, ZHU J, et al. A compound volume scattering model with emphasis on the morphological diversity of vegetation canopy scatterers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 12104-12113.
4 WANG Xuesong, CHEN Siwei. Polarimetric synthetic aperture radar interpretation and recognition: Advances and perspectives[J]. Journal of Radars, 2020, 9(2): 259-276.
4 王雪松, 陈思伟. 合成孔径雷达极化成像解译识别技术的进展与展望[J]. 雷达学报, 2020, 9(2): 259-276.
5 FREEMAN A, DURDEN S L. A Three-component scattering model for polarimetric sar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963-973.
6 VANZYL J J. Synthetic aperture radar polarimetry[M]. Hoboken, NJ: Wiley, 2011.
7 NEUMANN M, FERRO-FAMMIL L, POTTIER E. A general model-based polarimetric decomposition scheme for vegetated areas[C]∥Proceedings of the 4th International Work-shop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry(ESRIN),Frascati,Italy,2009: 26-30.
8 NEUMANN M. Remote sensing of vegetation using muti-baseline polarimetric SAR interferometry: Theoretical modeling and physical parameter retrieval[D]. Belin: Belin University of Technology, Germany, 2010.
9 CHEN S W, WANG X S, XIAO S P, et al. General polarimetric model-based decomposition for coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(3): 1843-1855.
10 BALLESTER-BERMAN J D, LOPEZ-SANCHEZ J M. Applying the Freeman-Durden decomposition concept to polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 48(1): 466-479.
11 YAMAGUCHI Y, MORIYAMA T, ISHIDO M, et al. Four-component scattering model for polarimetric SAR image decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699-1706.
12 GUO S, LI Y, ZHANG J, et al. Modification of polarimetric SAR interferometry target decomposition with accurate topography[J].IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1476-1480.
13 LEE J S, POTTIER E. Polarimetric radar imaging: From basics to applications[M]. Baca Rato: CRC Press, 2017.
14 YAMAGUCHI Y, YAJIMA Y, YAMADA H, et al. A four-component decomposition of PolSAR images based on the coherency matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2006,3(3):292-296.
15 ARII M, VAN ZYL J, KIM Y. Improvement of adaptive-model based decomposition with polarization orientation compensation[C]∥2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2012: 95-98.
16 LEE J S, SCHULER D L, AINSWORTH T L. Polarimetric SAR data compensation for terrain azimuth slope variation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2153-2163.
17 LEE J S, SCHULER D L, AINSWORTH T L, et al. On the estimation of radar polarization orientation shifts induced by terrain slopes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(1): 30-41.
18 NEUMANN M, FERRO-FAMIL L, REIGBER A. Estimation of forest structure, ground, and canopy layer characteristics from multibaseline polarimetric interferometric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 48(3): 1086-1104.
19 PAPATHANASSIOU K P, CLOUDE S R. Single-baseline polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2352-2363.
20 LEE J S, SCHULER D L, AINSWORTH T L. Polarimetric SAR data compensation for terrain azimuth slope variation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2153-2163.
21 FERRO-FAMIL L, NEUMANN M. Recent advances in the derivation of PolInSAR statistics:Study and applications[C]∥ 7th European Conference on Synthetic Aperture Radar. VDE, 2008: 1-4.
22 BALLESTER-BERMAN J D, LOPEZ-SANCHEZ J M, VICENTE-GUIJALBA F. Follow-up investigations on model-based PolInSAR techniques[C]∥ EUSAR 2014; 10th European Conference on Synthetic Aperture Radar. VDE, 2014: 1-4.
23 LI Deren, YANG Jie. Principle and applications of extracting DEM from SAR[J]. Journal of Geodesy and Geodynamics, 2002, 22(2): 1-6.
23 李德仁, 杨杰. 从卫星雷达提取地面高程信息的原理与应用[J]. 大地测量与地球动力学, 2002, 22(2): 1-6.
24 KELLNDORFER J M, WALKER W S, LAPOINT E, et al. Statistical fusion of LiDAR, InSAR, and optical remote sensing data for forest stand height characterization: A regional-scale method based on LVIS, SRTM, Landsat ETM+, and ancillary data sets[J]. Journal of Geophysical Research: Biogeosciences, 2010, 115(G2):1-10.
[1] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.