Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (5): 1028-1041    DOI: 10.11873/j.issn.1004-0323.2023.5.1028
InSAR专栏     
面向地表形变高精度监测的GNSS-InSAR融合方法
柯福阳1(),胡祥祥1,明璐璐1,刘学武2,尹继鑫2,刘宇航2
1.南京信息工程大学遥感与测绘工程学院,江苏 南京 210440
2.西宁市测绘院,青海 西宁 810000
GNSS-INSAR Fusion Method for High Precision Monitoring of Surface Deformation
Fuyang KE1(),Xiangxiang HU1,Lulu MING1,Xuewu LIU2,Jixin YIN2,Yuhang LIU2
1.School of Remote Sensing and Geomatics Engineering,Nanjing University of Information Science and Technology,Nanjing 210440,China
2.Xining Surveying and Mapping Institute,Xining 810000,China
 全文: PDF(11136 KB)   HTML
摘要:

GNSS-InSAR数据融合进行监测地表形变是目前地表形变监测领域研究的热点问题,传统GNSS-InSAR数据融合方法融合简单、不能动态地反映地表形变特点,导致数据使用不充分、形变特征精度低等后果。提出了一种新的基于InSAR校正值和卡尔曼滤波的GNSS-InSAR融合方法。根据时间序列的GNSS观测值和InSAR校正观测值的时空相关性,通过卡尔曼滤波对两种数据进行融合,得到更精确的地表三维形变结果。利用2018年11月15日至2022年6月3日103景Sentinel-1A数据和同期13个GNSS点位数据进行处理,实验结果表明:校正后的InSAR观测值与GNSS观测值经卡尔曼滤波融合结果比未校正的InSAR观测值与GNSS观测值融合结果精度高45%,比InSAR观测值精度高57%。因此,基于InSAR校正值和卡尔曼滤波的GNSS-InSAR融合模型提高了InSAR变形监测的精度,拓展提升InSAR应用范围的广度和深度。

关键词: GNSS-InSAR融合拟合推估法卡尔曼方法地表三维形变测量地表形变    
Abstract:

Surface deformation is a geological phenomenon caused by natural or artificial factors, and its disaster-causing process is slow and irreversible. It is also a geological disaster with destructive solid power. Therefore, real-time and high-precision surface deformation monitoring is one of the most critical tasks in maintaining urban safety. However, due to the complex causes, long duration, wide range, and many triggering factors of surface deformation, there are many difficulties in monitoring surface deformation using single technology such as leveling, GNSS, INSAR, and optical remote sensing. Considering the characteristics and complementarities of InSAR and GNSS, the combination of InSAR and BeiDou/GNSS can improve the surface deformation monitoring capability in space and time at the same time. Unluckily, the traditional GNSS-InSAR data fusion method is simple to fuse and cannot dynamically reflect surface deformation characteristics, leading to insufficient data use and low accuracy of deformation features. A new fusion method is proposed based on the Kalman filter algorithm GNSS-InSAR correction values. The method mainly consists of two sequential processes, i.e., the a priori processing of GNSS and INSAR data and the fusion process of GNSS-InSAR correction values based on the Kalman filter algorithm. The a priori processing of GNSS and INSAR data is to obtain the a priori deformation results using the fitted estimation model to correct the systematic errors in the InSAR observations. The fusion process of GNSS-InSAR correction values based on the Kalman filtering algorithm is to fuse the two data through Kalman filtering based on the spatial and temporal correlation between the time-series GNSS observations and the InSAR correction observations. The experiment was processed using 103 views of sentinel-1A data from November 15, 2018, to June 3, 2022, and 13 GNSS point data during the same period. The experimental results show that the fusion result of the corrected InSAR observations and GNSS observations by the Kalman filter is 45% more accurate than the fusion result of the uncorrected InSAR observations and the GNSS observations, which is 45% 57% higher than the accuracy of InSAR observations. Therefore, the fusion method model based on the Kalman filter algorithm of GNSS-InSAR corrected values proposed in this paper improves the accuracy of InSAR deformation monitoring and expands the breadth and depth of InSAR applications.

Key words: GNSS-InSAR data fusion method    Fitting estimation method    Kalman filtering    3D surface deformation measurement    The surface deformation
收稿日期: 2022-05-30 出版日期: 2023-11-07
ZTFLH:  TN911.7  
基金资助: 2022年度第六期“333人才”培养支持资助项目(BRA2022042);江苏省“六大人才高峰”高层次人才项目(XYDDX?045);西宁市科技计划项目(2019?Y?12)
作者简介: 柯福阳(1981-),男,福建惠安人,博士,教授,主要从事地质与气象灾害监测预警研究。E?mail:kfy_0829@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
柯福阳
胡祥祥
明璐璐
刘学武
尹继鑫
刘宇航

引用本文:

柯福阳,胡祥祥,明璐璐,刘学武,尹继鑫,刘宇航. 面向地表形变高精度监测的GNSS-InSAR融合方法[J]. 遥感技术与应用, 2023, 38(5): 1028-1041.

Fuyang KE,Xiangxiang HU,Lulu MING,Xuewu LIU,Jixin YIN,Yuhang LIU. GNSS-INSAR Fusion Method for High Precision Monitoring of Surface Deformation. Remote Sensing Technology and Application, 2023, 38(5): 1028-1041.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.5.1028        http://www.rsta.ac.cn/CN/Y2023/V38/I5/1028

图1  融合流程图
图2  研究区及GNSS站点示意图
入射角方位角极化方式轨道时间间隔
34.039193.223VV降轨20181115~20220603
表1  InSAR卫星相关数据
图3  基于SBAS-InSAR技术的LOS方向时间序列形变速率场(2018年11月15日至2022年6月3日)
图4  基于SBAS-InSAR技术的LOS方向时间序列形变场(2018 年 11 月 15 日至 2022 年 6月3 日)
图5  2018 年 11 月 15 日至 2022 年 6月3 日监测点视线向位移变化曲线
点号最大绝对误差最小绝对误差平均绝对误差均方根误差
Jc0114.71.97.68.2
Jc0210.00.13.45.0
Jc039.50.00.34.0
Jc0519.60.211.112.4
Jc0620.00.29.412.0
Jc088.40.11.34.4
Jc0913.30.52.64.7
Jc1010.30.02.64.1
Jc1110.70.25.26.5
Jc129.50.25.56.3
Jc139.50.41.54.2
Jc1611.00.07.38.3
Jc1818.40.010.011.6
表2  InSAR监测结果精度统计/mm
图6  2018 年 11 月 15 日至 2022 年 6月3 日6个站点InSAR观测值、InSAR校正值和GNSS视线向观测值值趋势对比图
点号最大绝对误差最小绝对误差平均绝对误差均方根误差
Jc0613.00.75.07.6
Jc094.60.01.62.5
Jc124.20.01.01.6
Jc134.60.12.83.5
Jc167.60.01.93.5
Jc1811.00.75.77.3
表3  校正后InSAR监测结果精度统计/mm
改正前改正后
平均绝对误差均方根误差平均绝对误差均方根误差
整体优化精度6.47.83.04.3
表4  校正前后InSAR整体监测结果精度表/mm
图7  E、N、U 3个方向上GNSS观测值、直接融合值和校正正后融合值对比图
图8  E、N、U方向拟合残差分布图
图9  E、N、U方向拟合精度
图10  InSAR校正前后与GNSS融合在E、N、U方向上均方根误差比较(单位:mm)
点位Klman滤波InSAR(未校正)-GNSS融合值Klman滤波InSAR(校正后)-GNSS融合值
jc069.46.1
jc093.21.8
jc124.71.2
jc133.42.8
jc166.72.4
jc189.45.9
表5  整体均方根误差比较(LOS向)/mm
图11  E、N、U时序三维形变场
1 WEI Gang, YIN Zhiqiang, SHI Liqun,et al. Geological characteristics and stability analysis of linjiaya landslide in Beishan area, Xining City [J]. Geology and Resources,2015,24(2):146-151.
1 魏刚,殷志强,史立群,等.西宁市北山地区林家崖滑坡发育特征及稳定性分析[J].地质与资源,2015,24(2):146-151.
2 HU Xiangxiang, KE Fuyang, ZHANG Zhishan,et al.Landslide evolution law considering multiple dynamic environmental factors:A case study of nine landslide areas in Xining city[J].Bulletin of Surveying and Mapping,2023(5):21-26,43.
2 胡祥祥,柯福阳,张志山,等.顾及多动态环境因子的滑坡演化规律研究——以西宁市9大滑坡区为例[J].测绘通报,2023(5):21-26,43.
3 GE Daqing, DAI Keren, GUO Zhaocheng, et al. Early identification of serious geological hazards with integrated remote sensing technologies:Thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949-956.
3 葛大庆,戴可人,郭兆成,等.重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J].武汉大学学报(信息科学版),2019,44(7):949-956.
4 LI Zhenhong, SONG Chuang, YU Chen, et al. Application of satellite radar remote Sensing to landslide detection and monitoring: Challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979.
4 李振洪,宋闯,余琛,等.卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J].武汉大学学报(信息科学版),2019,44(7):967-979.
5 WANG Aoguo,Data fusing method of land subsidence monitoring based on leveling and InSAR[J]. Science of Surveying and Mapping, 2015, 40(4): 121-125.
5 王爱国.运用水准和InSAR的地面沉降监测数据融合方法[J].测绘科学,2015,40(4):121-125.
6 XIAO Ruya, HE Xiufeng.Deformation monitoring of reservoirs and dams using time-series InSAR[J]. Geomatics and Information Science of Wuhan University,2019,44(9):1334-1341.
6 肖儒雅,何秀凤.时序InSAR水库大坝形变监测应用研究[J].武汉大学学报(信息科学版),2019,44(9):1334-1341.
7 ZHU Jianjun, LI Zhiwei, HU Jun.Research progress and methods of InSAR for deformation monitoring[J].Journal of Geodesy and Geoinformation Science,2017,46(10):1717-1733.
7 朱建军,李志伟,胡俊.InSAR变形监测方法与研究进展[J].测绘学报,2017,46(10):1717-1733.
8 CAO Haikun, ZHAO Lihua, BI Yanlei. Three-dimensional deformation field based on GPS-INSAR comprehensive deformation model with additional system parameters [J]. Geodesy and Geodynamics,2017,37(4):344-348.
8 曹海坤,赵丽华,毕研磊.利用附加系统参数的GPS-InSAR综合形变模型建立三维形变场[J].大地测量与地球动力学,2017,37(4):344-348.
9 ZHU Jianjun, YANG Zefa, LI Zhiwei,Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J].Journal of Geodesy and Geoinformation Science,2019,48(2):135-144.
9 朱建军,杨泽发,李志伟.InSAR矿区地表三维形变监测与预计研究进展[J].测绘学报,2019,48(2):135-144.
10 WANG Zhiwei,Research on resolving of three-dimensional displacement from multi-source InSAR data[J]. Journal of Geodesy and Geoinformation Science,2019,48(9):1206.王志伟.基于多源InSAR数据的三维地表形变解算方法研究[J].测绘学报,2019,48(9):1206.
11 BOCK Y, WILLIAMS S. Integrated satellite interferometry in southern california[J]. Eos, Transactions American Geophysical Union,1997,78(29).DOI:10.1029/97EO00192
doi: 10.1029/97EO00192
12 GE L L, HAN S W.The Double Interpolation and Double Prediction(DIDP) Approach for InSAR and GPS Integration[C]∥19th Int.Society of Photogrammetry and Remote Sensing Congress and Exhibition, Amsterdam, The Netherlands,2000.
13 LUO Haibin, HE Xiufeng. Improved weighting method and simulation analysis of GPS DInSAR integrated monitoring [J].Journal of China Coal Society,2012,37(10):1612-1617.
13 罗海滨,何秀凤.GPS-DInSAR集成监测的改进定权方法与仿真实验分析[J].煤炭学报,2012,37(10):1612-1617.
14 HU J, LI Z W, SUN Q,et al. Three-dimensional surface displacements from InSAR and GPS measurements with variance component estimation[J]. IEEE Geoscience and Remote Sensing Letters,2012,9(4):754-758. DOI:10.1109/LGRS. 2011.2181154
doi: 10.1109/LGRS. 2011.2181154
15 WANG Youjun, HU Jun, LIU Jihong, et al. Three-dimensional ddeformation monitoring based on InSAR and GNSS: An improved SISTEM method using variance component estimation[J].Geomatics and Information Science of Wuhan University,2021,46(10):1598-1608.
15 汪友军,胡俊,刘计洪,等.融合InSAR和GNSS的三维形变监测:利用方差分量估计的改进SISTEM方法[J].武汉大学学报(信息科学版),2021,46(10):1598-1608.
16 ZHAO Zengpeng, ZHANG Ziwen. Application of InSAR and GPS data fusion in deformation monitoring [J]. Geomatics & Spatial Information Technology,2020,43(7):37-40,44.
16 赵增鹏,张子文.InSAR与GPS数据融合在变形监测中的应用研究[J].测绘与空间地理信息,2020,43(7):37-40,44.
17 WANG Lei, JIANG Chuang, ZHANG Xianni, al et, Monitoring method of surface subsidence induced by inclined coal seam mining based on single line of sight D-InSAR[J]. Geomatics and Information Science of Wuhan University, 2023,48(4):620-630.
17 江克贵,王磊,滕超群.融合单视线D-InSAR和BK模型的煤矿地表三维变形动态监测方法研究[J].武汉大学学报(信息科学版),2023,48(4):620-630.
18 Jianing LÜ. Research on 3d surface deformation model based on GPS-InSAR data fusion[D]. Xi'an:Chang 'an University,2020.
18 吕佳凝. 基于GPS-InSAR数据融合的地表三维形变模型建立方法研究[D].西安:长安大学,2020.
19 FAN Qingsong, TANG Cuilian, CHEN Yu, et al. Application of GPS and InSAR technology in landslide monitoring [J]. Science of Surveying and Mapping,2006(5):60-62,5
19 范青松,汤翠莲,陈于,等.GPS与InSAR技术在滑坡监测中的应用研究[J].测绘科学,2006(05):60-62,5.
20 XIONG L, XU C, LIU Y,et al. 3D displacement field of wenchuan earthquake based on iterative least squares for virtual observation and GPS/InSAR Observations[J]. Remote Sensing, 2020, 12(6):977.DOI:10.3390/rs12060977
doi: 10.3390/rs12060977
21 LEI Kunchao, MA Fengshan, CHEN Beibei, et al. Characteristics of three-dimensional surface deformation field in Beijing plain based on InSAR and GPS technology[J]. Journal of Engineering Geology,2022,30(2):417-431.
21 雷坤超,马凤山,陈蓓蓓,等.基于时序InSAR和GPS技术的北京平原区地表三维形变场特征[J].工程地质学报,2022,30(2):417-431.
22 XUE X, FREYMUELLER J, LU Z. Modeling the posteruptive deformation at okmok based on the GPS and InSAR time series: Changes in the shallow magma storage system[J]. Journal of Geophysical Research:Solid Earth,2020, 125.DOI:10.1029/2019JB017801
doi: 10.1029/2019JB017801
23 WU Shuaiying, LIU Guoxiang, JIA Hongguo,et al.An InSAR atmospheric correction method based on GNSS and machine learning[J].Geomatics and Information Science of Wuhan University,2023,DOI:10.13203/j.whugis20220191.武帅莹,刘国祥,贾洪果等.一种基于GNSS和机器学习的InSAR大气改正方法[J].武汉大学学报(信息科学版),2023,DOI:10.13203/j.whugis20220191
doi: 10.13203/j.whugis20220191
24 ZHANG Yali, YOU Yangsheng, LAN Jingsong.Error analysis of baseline phase and atmosphere delay in InSAR data processing[J].Remote Sensing Technology and Application,2010,25(3):399-403.
24 张亚利,游扬声,兰敬松 .基线误差、相位误差和大气延迟误差对InSAR数据处理的影响分析[J].遥感技术与应用,2010,25(3):399-403.
25 LU Juan, WU Jicang, CHEN Yanling. Correction of InSAR deformation field for the 2011 Tohoku earthquake using GPS displacement data [J].Journal of Geodesy and Geodynamics,2017,37(7):726-731.
25 卢娟,伍吉仓,陈艳玲.利用GPS位移数据校正2011日本Tohoku地震的InSAR形变场[J].大地测量与地球动力学,2017,37(7):726-731.
26 HUXTABLE, BARTON D,CHOTOO, et al. The influence of equatorial scintillation on L-Band SAR image quality and phase[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(2):869-880.DOI:10.1109/TGRS. 2015. 2468573
doi: 10.1109/TGRS. 2015. 2468573
27 FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience & Remote Sensing,2001,39(1):8-20. DOI:10.1109/36. 898661
doi: 10.1109/36. 898661
28 CAO Haikun. Joint calculation of 3d surface deformation field by GPS and InSAR data[D]. Xi'an:Chang 'an University,2017.
28 曹海坤. GPS、InSAR数据联合解算地表三维形变场[D].西安:长安大学,2017.
29 HU Jun, LI Zhiwei, ZHU Jianjun,et al. Three-dimensional surface deformation monitoring based on BFGS method and InSAR and GPS technology [J]. Chinese Journal of Geophysics (in Chinese),2013,56(1):117-126.
29 胡俊,李志伟,朱建军,等.基于BFGS法融合InSAR和GPS技术监测地表三维形变[J].地球物理学报,2013,56(1):117-126.
30 ZHANG Qin. Processing and application of modern surveying data [M]. Surveying and Mapping Publishing House, 2011.
30 张勤. 近代测量数据处理与应用[M]. 测绘出版社, 2011.
31 SUN Yi. Development characteristics and stability analysis of loess landslide in Xining city[D]. Xi'an:Chang 'an University, 2013.
31 孙毅. 西宁市黄土滑坡发育特征及稳定性分析[D]. 西安:长安大学, 2013.
32 AN Bingqi, LUO Haibin, DING Haiyong, et al. Surface deformation monitoring based on SBAS-InSAR technology in Xining[J]. Remote Sensing Technology and Application, 201,36(4):838-846.
32 安炳琪,罗海滨,丁海勇,等.基于SBAS-InSAR技术的西宁地表形变监测[J].遥感技术与应用,2021,36(4):838-846.
33 QU Chunyan, SHAN Xinjian, ZHANG Guohong, et al. Effect of interference baseline on seismic deformation field: A case study of coseismo-post-seismic deformation field of mani earthquake[J]. Seismology and Geology, 2012,34(4): 672-683.
33 屈春燕,单新建,张国宏,等 .干涉基线对地震形变场的影响——以玛尼地震同震-震后形变场为例[J]. 地震地质,2012,34(4):672-683.
34 XU Caijun, WANG Hua. Comparison of InSAR phase unwrapping algorithms and error analysis[J]. Geomatics and Information Science of Wuhan University,2004,29(1): 67-71.
34 许才军,王华.InSAR相位解缠算法比较及误差分析[J].武汉大学学报(信息科学版),2004,29(1):67-71.
35 XU B, LI Z W, WANG Q J, et al. A refined strategy for removing composite errors of SAR interferogram[J]. IEEE Geoscience & Remote Sensing Letters,2013,11(1):143-147.DOI:10.1109/LGRS.2013.2250903
doi: 10.1109/LGRS.2013.2250903
36 LAN Qinlong, ZOU Jingui. Application of SBAS technology in land subsidence monitoring: A case study of Wuhan city[J].Bulletin of Surveying and Mapping,2018(S1):278-282.
36 蓝秦隆,邹进贵.SBAS技术在地面沉降监测中的应用——以武汉市为例[J].测绘通报,2018(S1):278-282.
37 HE Xiufeng, GAO Zhuang, XIAO Ruya, et al. Monitoring and analysis of subsidence along Lian-Yan railway using multi-temporal Sentinel-1A InSAR[J]. Acta Geodaetica Et Cartographica Sinica, 201,50(5):600-611.
37 何秀凤,高壮,肖儒雅,等.多时相Sentinel-1A InSAR的连盐高铁沉降监测分析[J].测绘学报,2021,50(5):600-611.
[1] 郭世鹏,张王菲,康伟,张庭苇,李云. 融合PS、SBAS、DS InSAR技术的昆明地面沉降研究[J]. 遥感技术与应用, 2022, 37(2): 460-473.
[2] 安炳琪,罗海滨,丁海勇,张志山,王伟,史潇,柯福阳,王明明. 基于SBAS-InSAR技术的西宁地表形变监测[J]. 遥感技术与应用, 2021, 36(4): 838-846.
[3] 李诗娆,张波,刘国祥,沙永莲,王敏,王晓文,张瑞. 基于NPSI方法的西安市地裂缝灾害链地表形变监测与演化态势分析[J]. 遥感技术与应用, 2021, 36(4): 857-864.
[4] 魏聪敏,葛伟鹏,邵延秀,吴东霖. 利用Sentinel-1A合成孔径雷达干涉时间序列监测陇东地区地面沉降变形[J]. 遥感技术与应用, 2020, 35(4): 864-872.
[5] 卢旺达,韩春明,岳昔娟,赵迎辉,周格仪. 基于Sentinel-1A数据的天津地区PS-InSAR地面沉降监测与分析[J]. 遥感技术与应用, 2020, 35(2): 416-423.
[6] 李丹, 杨斌, 陈财. 基于Sentinel-1A数据反演九寨沟地震地表形变场[J]. 遥感技术与应用, 2018, 33(6): 1141-1148.
[7] 朱叶飞,朱锦旗,詹雅婷,崔艳梅. 基于小基线InSAR技术监测九台营城矿区2012年地表形变[J]. 遥感技术与应用, 2015, 30(2): 370-375.
[8] 陶利,张红,王超,汤益先. 新型多基线DInSAR地表形变监测技术研究动态[J]. 遥感技术与应用, 2012, 27(6): 805-811.
[9] 罗海滨, 何秀凤. 应用InSAR 与GPS 集成技术监测地表形变探讨[J]. 遥感技术与应用, 2006, 21(6): 493-496.